ime Fiiv COPY

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A201 030

ELECTE

DISSEHTATIUN SN0V151933 .

A DATABASE APPROACH
TO COMPUTER INTEGRATED MANUFACTURING

by

Dana E. Madison

June 1988

Thesis Advisor:

Approved for public release; distribution is unlimited

88 11 14 005

e e e

UNCLASSIFIED

_—

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

/)//’2 AL,?’V // Ji@

1a. REPORT SECURITY CLASSIFICATION
Unclassified

ey
1b RESTRICTIVE MARKINGS

[—
2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Distribution in unlimited

TPERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

%3. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
(if applicable)

Naval Postgraduate School Code 52

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK

WORK UNIT
ELEMENT NO. NO. NO

ACCESSION NO.

11. TITLE (Include Security Classification)

A DATABASE APPROACH TO COMPUTER INTEGRATED MANUFACTURING

12. PERSONAL AUTHOR(S)

Madison, Dana K,

13a. TYPE OF REPORT 13b TIME COVERED
ion FROM _ = TO
16 SUPPLEMENTARY NOTATION

-

14. DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT

1988 Jupe 321

The views expressed in this thesis are those of the author and do not reflect the official

Lt
17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
;ELD GROUP SUB-GROUP Integration; Manufacturing; Data Model; Data-oriented
|

‘

19(:85TRACT (Continue on reverse if necessary and identify by biock number)

This work presents a new approach to the integration of manufacturing activities. The
manufacturing eavironment has capitalized on the use of automation to evolve to a highly
specialized state characterized by heterogeneous systems providing computer support to the
various activities. Conventional approaches to integration assume that these activities
must continue to exist in their current relationships. We use a database approach to the
integration problem which removes the traditional boundaries between activities. We
develop a data model which captures more of the semantics of the manufacturing environment
than existing models and allows us to take a data-oriented perspective of the activities
it encompasses. We also show how the use of the data-oriented approach provides for
integzation of these activites and reduces the complexity of the manufacturing environment.

. Vea A l,,‘if ﬂ-\-/"_ W

“e) (—

20 DlSTRIBUTlONIAVAILABIUTY OF ABSTRACT

R uncLassiFieo/uNumiTED T SAME AS RPT. [J DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclagsified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Prof. C. T. Wu

22b TELEPHONE (Include Area Code) | c2¢. OFFICE SYMBOL

(408) 646-3391 Code 52Wg

DO FORM 1473, 8a mar

83 APR edition may be used until exhausted.
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSImemmM Printing Office: 1988—008-24.
i

E—— — >

Approved for public release; distribution is unlimited
A Database Approach to Computer Integrated Manufacturing

by

Dana E. Madison
Major, United States Army
’ B.S., State University College at Brockport, NY, 1972
M.A., State University College at Brockport, NY, 1975

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Author; @““ fM’"’

Dana E. Madison

1 Approved by:

1 D. K. Hsiao R. B. McGhee

Professor oféomﬁutejcience Professor of Computer Science

7/ J.R. Ward B. O. Shubert

Professor of Associate Professor of
Electrical and Computer Engineering Operations Research

i C. T4Wu i
' Associate Professor of Computer Science
Dissertation Supervisor

Approved by:

VY. , Chairman, Computeg Science Department

Approved by: \.
¥ P y Kneale T. Marshall,

1 Y A DI D

ABSTRACT

This work presents a new approach to the integration of manufacturing activities.
The manufacturing environment has capitalized on the use of automation to evolve to a
highly specialized state characterized by heterogeneous systems providing computer
support to the various activities. Conventional approaches to integration assume that
these activities must continue to exist in their current relationships. We use a database
approach to the integration problem which removes the traditional boundaries between
activities. We develop a data model which captures more of the semantics of the
manufacturing environment than existing models and allows us to take a data-oriented
perspective of the activities it encompasses. We also show how the use of the
data-oriented approach provides for integration of these activities and reduces the

complexity of the manufacturing environment.

Accession For

Wittt
NTIS GRAXI

DTIC TAB

Unannounced 0

Justification —]

By.

Distribuﬁ_i_qn/
Availability Codes

Avall 55&/61'

Dist Special

AL

TABLE OF CONTENTS
ACKNOWLEDGEMENT X
1L INTRODUCTION 1
A. BACKGROUND.........ccommsrramssessssmsssssssssssssnsssssssssssssnssssansssssssssssssssssnsnsssssnssess 1
B. THE PROBLEM..........cooovoutemssesssnsssmssssssssasassssssssssssessssennsssnsssssssssssssossssssnssssass 1
II. STATE-OF-THE-ART MANUFACTURING 6
A. INTRODUGCTION.......oovooturmersermsssssmnssnssssnsssssssssssssmssssmasssssssssssansessssssssssssssssnse 6
B. COMPUTER AIDED DESIGN..........ooocoomssrsemssesnassssmesssssnsssssssssssnssssnsssssses 8
1. The DesSign PrOCESS.......ccoeiecrsinisniserssscsnasisscsessansnessnesssssssesassnssasesassasasnassssass 8
2. Use of Automation in DESignccieeviniiivnnnnnnnniseninsisinesssansessessssessees 9
3. Classification of CAD SyStems.......ccovueervienisuisnnccssisnsscsassassessessessenessnssasassas 10
4. INterfacing CAD SYSIEINSccvvveeesrennesssesasssssasssssssssssssssssssssssssessssansssssnees 11
C. COMPUTER AIDED MANUFACTURINGcc.ormnrernssrsseessanssssssnessssnnns 12
1. Process PIanning.........c.ccceeeensntinnesnssenssnnsessnsncssessessssessssssssssssssssesaseasessaseons 12
2. NC PIOGIAMIINGcvvveeeomeneceseesmssesemesossesssssssesssemmesessesseseessemesssessseseseennns 14
3. Master Schedulingcccoececeneneereacrecneanes poorssens Coeneesensensssasesssanasssssenasnens .15
4. Material Requirements Planning..................18
D. FLEXIBLE MANUFACTURING SYSTEMS.cvccvcrsrsrenrsmsnssrssrns renrenen:18
1. Just-in-Time.......ccocereererererrecrerrrncnsesanessenes deastensssenasssesarsassassenssnsnasessasaasseses 19
2. GIOUP TENOIOZYconvvenerencresernesssnssseensisieesssaessasssnessassssssssassssssssensinens 19
3. Cellular Manufacturing............eoeevveveeeneeces fereraneens RS . ||
E. BUSINESS DATA PROCESSING....c.vrmerrs s s 20
F. SURVEY OF AUTOMATED SUPPORT FOR MANUFACTURING............22
1. Function-Specific SUppOrtccovuerseeevenne N i 2
8. SUPPOTL FOF CAD......cccoveveirrnrirmsssssssisisississsssssssssnsassssssssssssasessssasssnssases 22
b. Standalone Support for Other FUnCHONS..........cccoceecteeresecnrerereessenesens 24
2. Application-SPpecific SUPPOLL.......ccccceriirinireniccsnsseccssensnssesessessssssessresassasens 25

v

T S AADR A Vg

3. Other Automated SUPPOTL........ccecerieereeiaesssraeseesasssasesssessessssssassssnasasssssasssanses 26

G. SUMMARYciiimmnnanniinninnistassisssssssessssessassssssssassissssssssssssesesssssssasasssssssns 27
COMPUTER INTEGRATED MANUFACTURING 28

A. BACKGROUNDcoctmmnmmnssreresmissssesssesssssssssssssasstsssssesssssssssssssssssssessessnssess 28
B. WHAT IS COMPUTER INTEGRATED MANUFACTURING?..........ccvceuenes 29
C. CURRENT APPROACHES TO INTEGRATIONcccccovennnmninniisearssnssannae 31
1. High-Level INtEgration.........ccccvivicinmnnsinnnsunscsscssesssnisassessessessesissnssssnssssssssens 31

2. Integration by Centralized Database Supportcccveviivisnrerenisensinnnnn 33

3. Low-Level INEErationccieinninniiesnisiniincsninnessssessssssssssessessessesssssses 36

D. SUMMARYcoiniiiinininiinniississsessisissisistesssississsssssssssesssssssesesssssssses 38
DATA MODELING 39

A. BACKGROUNDcoviiniririinisiisssiisassissssiamssssststsssississssssssssssssssssssesessnsesss 39
B. TRADITIONAL DATA MODELSccoiininininnitincenissssisnesssasensane 40
1. HierarchiCal..........cccovinmniinnniiniiinisicisiisnccsieniessesecsissnsssnsssssisesssssnseses 40

2. NEIWOTK ..ottt siesessesostessstsssesissssassesssesestessessssssssnsssansensos 42

3. Relational........ccviieinreiiinciincinennitnsceciesiese st sssssssncssssasasssssssssstssensnanes 43

4. Limitations of the Traditional Modelsccccovnineiinnsnnernsnnssinnescnsesenans 46

C. SEMANTIC DATA MODELS...........ccniininniicncnisninisisensassescsssssasecsens 47
1. Background..........ciiiniiinicnninnnnenetsnesesinesssessassnsssisssssssssessssssssnsessassonsasens 47

2. ADSITaCtiON CONCEPLS....cecirrierrecaensiraesassssssiossosnestonasssaessosaessssnsonsassosassasssssssess 48

a. Generalization/SPecialization............cccerueceninceinsenneesennssscssseesesenessasns 48

b. Aggregation “ Ceeetsasetsars st st s e e ss e st srbssasr e aesb R as b sb e b sR b 49

€. ASSOCIBUOMN......ovcrririnririniineestercntnssessesesssnatsssasssasssrssssesssrsasassassnasas 50

d. Version Generalizatonccuvinioncnriiiminniiniinniniiissssioe 51

. Instantiation/ClassifiCatON..........ccccverirircnretniennvennnirinsesnsssrisieissessnanees 52

f. Version Hierarchy........ciicnicnnesineniienineissienssssssnenssasssssnessssens 53

g. Instance HIierarchycccecinrirninicnieninenicnoneceinnneesessesansesssssessssnsaces 55

3. Survey of Current Semantic Models........cccuviinesinniiinniinnsisrnsesnecseesesenns 55

e R ")
a. Entity-Relationship Model...........ccocvvenennnninerensnscsennnneinennsnnecnceness 55
b. Functional MOdel........cccccciniiieinvinmnnnninniinissesissasssessssanssnssesssessessesssnenses 57
c. Extended Semantic Hierarchy Model.........cccveiinivninccninsnsinnsnnsaeens 58
d. Semantic Database Model rrestsuesantensnnsesassstasssastatas 58
€. TAKIS.....cceerrrrrreensncrrarssesscsssseststiacssessesessnsnestnesnsssssessesssseassasssssnassasassssnsse 59
£, SAMPX ... orereenereriseesssssssssssasssssssstsssssssssssstasssssesssssessassastssansasssssarans 59
g. Extended Relational Model.........cccimiiiiniinsincicscsninnsesisenisnessnasessssonsssnse 60
h. Object-Oriented Approach - ereerseeassrenensenesssstessnasensins 60
D. SUMMARYcccontiinnieninssnssssninssssssssisassissssssssssssssssssasssssassssssssssssassansasssesssssses 60
DATA-ORIENTED MODEL FOR INTEGRATING MANUFACTURING
FUNCTIONS 62
A. MOTIVATION......cimiinnnrssiniscsssssnirisssssssmsssssssssssassssssnssesssssissssssessssssasssssssassss 62
B. DATA MODEL DESCRIPTIONcccconnnmmmmniisnsisnsnesissssmssessassssssesessssesans 63
1. Molecular AZEregationccveurnirereescssnsunsessesassssssssistosssssssnsssssessessenseses 64
2. GENETaliZAtION.........coocrectirreninnisrenissciesnssestesissisusssesssnsssessssessssassssnnsnsasansons oos 65
3. Version HIerarchy.....cccoccininiininniieniincmniesiimiosssssssissasass 66
4, INSLANUAONcoveruerernencsessaenaresesssssssessnssesnosessessescssassessontsssssonsssesssssssesssosess 69
5. Instance HIeTarChycccccninininnnnnmeiiismosiiiossseossssssses 70
C. FORMAL DEFINITION OF THE DATA MODELcocvnevcrinenrierecinns 72
D. ROLE OF THE DATA MODEL..........ccovcniminnsniniosiissnsssssessisssssssnsens 74
E. SUMMARYoiicnnnnensnenstessssassisissessasssisssssssssesssssssssssssssssssssasssesesss 74
HIGH-LEVEL INTERFACE APPROACH TO INTEGRATING
MANUFACTURING FUNCTIONS 76
A. MOTIVATION....ccoinimracnnsssnnsanssssssssessssessssssssssssssssasassssssssssasssessssassssassssssasns 76
B. DATA REQUIREMENTS FOR INTEGRATING CAD AND CAM................ 76
1. Representing Design Data............ccoviininnniniinininiiiniensesnsos 77
a. Use of Prototypes and INhETitanceccevvinveereerirnscnsenssaecsescsssssanncns 78
D. COOrdinAte SYSIEMSccveruerervrresiesssesuesessineasssssosnessseesarsaassenssnassansassoss 79
vl

P 27 =

c. Storage and Manipulation of Design Data............ccccccemmincncncninrecennennns 81
2. Data Used in CAM........ccciiinininnssinnnnensnesimessssassssssssssssssssesssesssssses 81
a. Manufacturing OPETAtONSccecvveeeeenriniitcrccnsnnscencesesesissisessessossencens 82
b. Bill of materials..........ccccvvininininsnnnniniicniniiisisssssssssssssens 82
C. EXPERT SYSTEM TRANSLATORcccoevvinininnnrnrininiiesnsussessacsssssssssssnensaans 82
1. EXPETE SYSIEIMS .oucuiuiccniienensensmessssasssssnsassesssssssssssasasssssssasssasasssssssstsssnssens 84
2. Translator Implementation............coceeeericiinnininimnnisinrcesiisisssisssiessesesnns 85
8. SChema DAcoveiinnirinniririnnriiiistsrcnsssesssssrissssssssessssessssssaens 87
b. DeSign DAata.....ccucciioiiinininniniisiiteiisssessestisssssssessessesssssesssssesssossessns 88
C. Standards Datacccveceernririerisiruennseesassssscssnsessessssessassssnsseessssasssssases 89
d. AsSSEmbly Data.........c.coiieienenrenennininirnseesenssseessassesssasssesssasessssnsessssases 90
e. Translator Meta-Rulesooovviiiicninnninncneiininsicnsesssencens 92
f. Process Planning Data...........cceurceiniceensensessenseranssesessssesassnsssesesseosasseses 93
g. Scheduling Data............ccevininiiininmnnnninisiiecsnsenssissssissssess s 93
h. Operation of the Translator............cccoomeevninniiieniecnerenneesssseesesseesensnenns 93
(1) Standards Checksccvverenncinininnnnienenemsnssissinesosenissssassssseens 94
(2) Product ASSemblycceceereniivieneninrectninnsenressesesnsessossnessessesessssnses 97
(3) Raw Materials LiStNEc.covvrerecernnrveesenteneesensescssesassssssessoseessnsses 105
D. SUMMARYcoiiiininininenesaiseniisissssesinssssssssssessssnsssenssssssssesssssentnsssssssasssssss 108
VII. LOW-LEVEL INTEGRATION OF MANUFACTURING FUNCTIONS......111
A, MOTIVATIONcniiiinniinssstniesnitrsiessssssstosssasnssssssssossstssansessssssssaness 111
B. THE DATA-ORIENTED APPROACH........cccocvniminmnnininnirccninisesinsscsncsans 115
1. Preparatory Phase of Manufacturing..........c..cccoevccmnnencncnncnrecnencninccnenes 116
a. Modeling the Semantics of Product Design...........cccccovvevincrnninrnnscrennes 117
b. Our Approach to Process Planningcccovvreeccinecnrcncsneseessecsaesanees 124
¢. Modeling the Semantics of Process Planning..........cccccoevevvneiincnicvcnene 125
d. Integrating Design and Process Planning Functionsccccocvevenvnaenes 128
2. Production MONItOTINg.........ccocvviiininininininsinsiiennsesnsssssnsessssnesssssssssannne 129
vil

'
t
3

P

C e

a. Our Approach to Scheduling and Shop Floor Layout
b. Modeling the Semantics of Shop Floor Layoutccceveiiiniiucnnennns

c. An Example

C. SUMMARY

..

VIIL. EVALUATION

A. COMPARISON OF DATA MODELS

1. Manufacturing Activities to be Modeled............cocovenrnrnininnnnecrieneceesnsannee
2. Support Available From Existing Modelscccccoicericiennccsnceniniiricnecnnnns
B. DATA-ORIENTED VS. PROCESS-ORIENTED APPROACH.....................

1. Prototype Implementations

a. General Information

a
b. Translation of Design Data

c. Process Planning

...........

................

................

........................

.....................

..

..

--

--

..

--

..

d. Translation of Process Planning Dataccoueeenenaesaaesncsessassessoas

e. Scheduling

..............................

..............................

........

.....................

..

..

--

..

--

LIST OF REFERENCES

..

vili

T AR e

"‘4

e e s o e S S —t — —e—
APPENDIX A - TRANSLATOR PROGRAM 174
A. MAIN PROGRAM.......comtimmritrritirsnnsnsnsssnssssssessssssassssssssassesssssssasssssssssssssssssess 174
B. STANDARDS DATAttenienennnnnssstsnsnsnssssssssssssssssssssssrsssnssscssonses 184
C. ASSEMBLY RULES ...ttt snsnsssnensisssas s sssssssssnsssssssssssaens 185
D. BILL OF MATERIALS RULES.........coesnnnsinrninenissnsesnsesnscssacsssssesenes 195
E. DESIGN DATA........ctenniinnnenessninnnssnssesssssasasesssesesssssssssssnssssssssesssses 202
F. SCHEMA DATA......icinesvrinnsnssnsassnnisstssssssssssseessssssssessssssasssssssssssnses 220
G. CONVERSION RULEScovitiunnisimninisisinssisisssisessssmssssssssssssssssssassessnes 221
H. MISCELLANEOUS ROUTINESccoeevscremrarrrnrrerssessmirssasenssscsessssssrsseseses 222
APPENDIX B - SAMPLE TRANSLATOR EXECUTION 224
APPENDIX C - PROTOTYPE PROGRAM LISTINGS 238
A. PROCESS-ORIENTED PROTOTYPE LISTINGccoconmiminiriminssenasenns 238
B. DATA-ORIENTED PROTOTYPE LISTINGccccceviimmenienrirnisinsinsnnns 274
INITIAL DISTRIBUTION LIST 309

ACKNOWLEDGEMENT

I would like to express my thanks to my advisor, C. Thomas Wu, whose support and
guidance was invaluable to me. The suggestions received from Professor David Smith of
the Mechanical Engineering Department helped me gain insight from an engineer’s
perspective and are highly appreciated. The guidance I received from the members of my
Doctoral Committee, Professor David Hsiao, Professor Robert McGhee, Professor Bruno
Shubert, and Professor John Ward, strengthened the presentation of my research work in
this thesis.

I would also like to express my appreciation to my family for their love and unfailing
support. In particular, I am grateful to my wife Linda for her encouragement throughout
my course of study. Dr. and Mrs. Paul deR. Kolisch deserve special recognition for their
love and inspiration over the past 22 years.

I would also like to thank the U.S. Army Medical Department for their financial
support of my research and studies at the Naval Postgraduate School.

I. INTRODUCTION

A. BACKGROUND

Computers have established themselves as powerful tools in the attempt to drive
down costs and improve efficiency in the manufacturing environment. To date, their
application has been piecemeal, they are not part of a concerted effort to integrate
business activities [Ref. 1]. The goal of this research is to examine the potential for use of
data modeling aspects of database technology in integrated manufacturing, in particular
the data interactions which form the basis of an integrated system. Alternative
approaches to integration which utilize advanced database and artificial intelligence
technologies are explored. The focus of the research is on developing a data model for
the approach we deem most feasible. The research includes an extensive study of the

current manufacturing functions and semantic data modeling.

B. THE PROBLEM

The introduction of intelligent integrated automation into the factory has the
potential to increase efficiency and optimize utilization of resources, the two most
important concerns of a manufacturing company trying to keep up with the pace of a
rapidly changing marketplace. Within the past decade, product development has evolved
from a simple communication process between design engineer and mechanic to a
complex system utilizing highly specialized personnel, state-of-the-art automation and
communications technology and highly sophisticated manufacturing tools. As businesses
grew, tasks were divided up and allocated to people with special skills. The resulting
improvement in efficiency was offset by the creation of more complex systems for
moving materials and information, causing greater administrative overhead. More work
was created in the control and management of the resulting complexity. Few people had

insight into more than just a small part of the manufacturing process. Manufacturing

w———-———:“ - ——

problems were treated singularly rather than being viewed in the context of the entire
process, which resulted in the introduction of automation to improve the performance of a
small, often self-contained area within a company. The overall effect on performance
generally fell short of the potential that could have been achieved by looking at the
process as a whole from the start. The fact that automation was introduced provided an

f opportunity to simplify the overall functions of the manufacturing process. Instead, it was
treated as a simple machine replacement process. Another problem inherent in those
companies was the Just in Case philosophy of production which further complicated the
overall system because of the need for buffering inventory at every point where
production could be interrupted. Raw materials, material in progress, work in progress,
finished parts, and finished products were held just in case interruptions occurred.
Managers recognized that tighter control over manufacturing operations was necessary to
survive in a competitive environment characterized by rising salaries, falling prices, and
diminishing market shares. This realization led to the use of computers to support various
functions across the manufacturing spectrum in hopes of achieving control. [Ref. 1)

The use of computers made the concept of dynamically programmable
manufacturing tools a reality. Paper-tape driven numerical control (NC) machines
logically evolved into computer numerical control (CNC) machines. Design functions
became highly specialized and efficient when augmented with Computer Aided Design
(CAD) technology. Manual accounting and inventory systems were replaced by
management information systems to increase the management span of control over the
rapidly expanding business. The result of this massive application of computers was
substantial improvements in productivity, quality, cost reductions, and other factors vital
to achievement of business goals, and an automation program which was highly
fragmented and difficult to control [Ref. 2].

Many of the automated functions were supported by mutually incompatible
computers, control devices, and automated machines, most of which could not
communicate or exchange data with other systems. Thus, the order flow from customer

to shipping dock and the information flow between engineering and manufacturing were

severely fragmented. The solution to restoring the communication and material flows
involves the integration of these currently heterogeneous systems using a concept called
Computer Integrated Manufacturing (CIM) [Refs. 1, 2]. Using this concept, which will
be discussed in detail in Chapter III, links are formed between existing islands of
automation, gradually evolving towards a totally integrated system.

The alternatives to integration presented here all focus on implementing the CIM
concept. Once a manufacturing company makes the decision to implement Computer
Integrated Manufacturing technology, the implementation strategy must be determined.
The complexity of the manufacturing process dictates that the integration implementation
be modular and phased in from the lowest level of operation. In some cases, low-level
functions will need to be completely redefined in order to take advantage of CIM
technology. The company will experience the initial turmoil caused by changes in
operating procedures, the learning curve for new skills, and the anticipation of impending
control.

On the other hand, the company will have better control of information and will
make better decisions as a result. The availability of relevant information will permit
employees’ time to be spent more productively and use of other manufacturing resources
will be optimized as well.

The successful integration of product design and manufacturing functions requires a
complete understanding of the relationships of data produced and used throughout the
product life cycle and some mechanism to translate product design data into a form which

is useful in the manufacturing process.

A major difference in our work from that of previously published CIM data
modeling work is that the modeling technique we propose is capable of describing the
structural aspects of products as well as their production processes. This uniformity will
enable us to integrate different manufacturing functions in a clear and natural manner.
Our approach can be characterized as data-oriented since we identify the data
requirements of various manufacturing functions and attempt to create a common data

manager for them, whereas other efforts can be characterized as process-oriented, since

they attempt to integrate different functions by creating an interface between them,
assuming that the data management is effectively handled by the relational DBMS. But
the relational DBMS is not a panacea. The traditional relational data manager is simply
not capable of expressing complex objects and relationships that exist in the
manufacturing environment.

We divided the basic manufacturing activities into four simple stages based on the
type of function they performed (see Figure 1). We then proceeded to identify the data
requirements of each stage. The benefit of our approach is clear: theirs is evolutionary
while ours is revolutionary. In our opinion, there is nothing to be gained by evolving the

currently highly fragmented state of manufacturing. It is much more beneficial to attack

the problem from a fresh viewpoint.
-Design Product
- Engineering Design
PRODUCT
DEMAND
J .o,g., !
- Machine Set ToCReNIng
- Teol s:.aa: Production Business | -imventory
g Planning Activities | P “";' e
- Shipping
p - Acoounting
«—-sp : cOntrol
- Scheduling mmmy : deta
- Quality Control Production
- Shoghoor Monitoring

Figure 1. Stages of Manufacturing

This research in data modeling for CIM is just the beginning of an even larger effort
to develop an advanced databasc management system using database engineering
techniques [Ref. 3]. This database management system will be able to handle advanced

application areas such as tactical weapons systems, industrial manufacturing systems, and

integrated corporate information systems. In current practice, the data for these
applications are either handled manually or by a specialized file manager. The
requirements for an advanced database management system have been identified in
[Ref. 3] and provide direction for the overall research effort.

In this dissertation, we will categorize the different approaches to integrating
manufacturing functions and discuss two of these approaches in detail. We will describe
the data model we have developed to achieve integration, and describe how this data
model supports the manufacturing environment.

II. STATE-OF-THE-ART MANUFACTURING

A. INTRODUCTION

The role of automation in the operations of & manufacturing company can be best
portrayed by describing the various functions and activities involved in the design and
development of a product. The functions and activities comprise the product life cycle.
Figure 2 depicts the product life cycle, as formulated in this thesis. We view the life cycle

as a series of activities, each interacting with one or more other activities in the cycle.

d";::'n f——— | engineering ——— .| drafting

order process

customer equipment |* planning

[}

l L L
quality . production
control | ° production |« scheduling

L t

Figure 2. Product Life Cycle

Input to the cycle consists of information about prospective markets and customer
desires, also known as the demand for the product. It is this demand which drives the
decision-making process to determine in what ways the product life cycle will be
activated and controlled.

The activities involved in the product life cycle can be further broken down into the
basic processes performed within a factory. These include design engineering, process
planning, NC machine programming, robot programming, quality control, shop floor
management, marketing, sales estimating, order processing, master scheduling, material

ﬁ—_————-—E‘ ~ -

requirements planning, plant maintenance, shipping, inventory management, purchasing,
and accounting. These processes have been grouped in many different ways forming the
functions known as Computer Aided Design (CAD), Computer Aided Manufacturing
(CAM), Computer Aided Process Planning (CAPP), Group Technology (GT), Flexible
Manufacturing Systems (FMS), and others. In forming these groupings, the basic
processes have not been treated consistently. In some cases material requirements
planning is considered part of CAM, others consider it part of CAPP, still others consider
it the hub around which the other processes revolve. One of the major problems
associated with integrating manufacturing functions (or processes) is that the definition of
what constitutes a function is not standard within the manufacturing industry. We will
provide definitions for the functions which are most prevalent in our research.

Figure 3 shows the basic processes partitioned into CAD, CAM, FMS, and
Business. Our discussion of the manufacturing environment will assume the groupings

shown in the figure.

B. COMPUTER AIDED DESIGN

1. The Design Process

The design process starts with the definition of a need which can be satisfied by
some product. The definition of this need may involve many people and a lot of time, or
may be developed by one person in a short period of time. A general concept of a product
is formulated and refined from this definition, eventually producing a specification for the
product. Figure 4 illustrates this process.

Note that at any point in the design process, the next step could be to go back
to a previous step, reformulate, and work forward again. Design is much more than a
simple serial process since each step depends on the result of the previous one and may in
fact change the previous one. In trying to formulate a general concept of a solution, it is
frequently the case that the need is not well-defined. The possible infeasibility of a design
has to be considered in the formulation of the general concept and in the development of

e~ Engineerig . Processig
Engineering Forsomsting
Proosse
Planning Sales Acoounting
Estimating Functions
Design NC Mashine,
Enginssring Invertory
Pm:‘:-‘;l m Management
CAD
G Regobemerst Purchesing
Planning
CAM
vy il Shipping
FMS Control Maionontros
FMS BUSINESS

Figure 3. Basic Manufacturing Processes

f
— definition of need

|

eneral concept
gof the solutioﬁ

|

.__.prelim:gra? pﬁﬁi&wb"s

|

v final product
specitications

requirements phase

preliminary design phase

detalied design phase

Figure 4, The Design Process

specifications. These, and other unforeseen events, cause product design to be an iterative
process.

The design process can also be described in terms of phases, also shown in
Figure 4. The initial definition and subsequent modification of the need is done in the
requirements phase. The preliminary design phase produces a set of potential solutions to
the requirement and determines the best alternative which will establish the direction for
the detailed design. The detailed design uses the general concept from the preliminary
design phase to synthesize the assemblies and components eventually leading to detailed
specifications for a product. These specifications include choices of materials for the
individual parts, tolerances, and detailed engineering drawings of the product. Again, the
phases are strongly interconnected and interdependent upon each other.

The design process describes the gathering, handling, and creative organizing of
information relevant to the problem situation; it prescribes the derivation of decisions
which are optimized, communicated, and tested or otherwise evaluated; it has an
iterative character, for often, in the doing, new information becomes available or new
insights are gained which require the repetition of earlier operations. Some of the
operations are qualitatively logical in character, like reasoning from verbal
propositions; some are based on subjective evaluations, as in comparing or combining
unlike values; many are amenable to quantitative analysis and to computer applications,
as in optimizing an analytically formulated representation of a problem solution. For
the most part the techniques associated with each operation in the design process are of
such great generality that their usefulness is not limited to any particular step. [Ref. 4)

2. Use of Automation in Design

The availability of Computer Aided Design (CAD) has enhanced the design
process by providing design engineers with tools for generating new designs from scratch
and modifying existing designs. The existing designs can be located and modified to
accommodate new requirements or refined definitions of existing requirements. The
result can then be analyzed mathematically to check load factors, stress, etc. A major
advantage in the use of CAD technology for the design process is the increased
productivity of design engineers due to shortened development time for a product. In
addition, the automation of design data has tremendously increased its reliability and
reusability.

(b) PRI e ST WP e

Jove PR TR

3. Classification of CAD Systems

One way to classify CAD systems is by the way they represent design objects.
Three alternative geometric representations are the two-dimensional drafting systems, and
the wire-frame, surface, and solid three-dimensional models. These representations are
stored as computer internal models [Ref. 5], whose complexity varies from one
representation to another. These computer internal models can be structured as a matrix
where the types of generated model data (e.g., cylinder, cone, prism) are listed in rows
and the computer internal representation (data structure), in columns. A significant
characteristic of a computer internal model is its parametric capability to change the
dimensions for a specified object while leaving the object’s topology (general shape)
intact.

Two-dimensional drafting systems are basically automated drafting board
systems which display a two-dimensional representation of the object being designed.
Engineers using this tyne of system generally develop a line drawing and produce a high
quality output using a pen plotter. While these systems do improve the productivity of
the designers who use them, they only produce two-dimensional drawings of
three-dimensional objects and it is up to the engineer to read the drawings and infer the
three-dimensional shape from them. An additional problem often arises because the
two-dimensional drawings are ambiguous. Most two-dimensional drafting systems use a
form of modeling called wire-frame modeling, so called because the edges of an object
are shown as lines and the image of the object appears to be a frame made out of wire. A
predominant limitation of a wire-frame model is that all the lines that define the edges and
contoured surfaces of an object are shown in the image so that the lines representing the
edges at the rear of the object show right through the foreground surfaces. This limitation
introduces even more ambiguity into the image interpretation problem. Systems which
feature hidden-line removal seek to eliminate this ambiguity by removing the hidden
background lines in the image.

Three-dimensional wire-frame modeling systems overcome some of the
limitations of the two-dimensional systems by allowing an engineer to create a full

10

R T —— L — ~w

three-dimensional model of an object rather than a two-dimensional illustration. The
system can automatically generate orthogonal views (much like what the two-dimensional
system would have produced), perspective drawings, and even close-ups of detailed
portions of an image. While three-dimensional systems have these capabilities, they
generally still have the hidden-line removal problem.

Surface models represent the vertices and edges of an object in much the same
way as wire-frame models, but also include polygonal faces of three-dimensional objects
and allow the properties of those faces to be specified. These models are more complex
than wire-frame models to implement, but produce much more realistic images with the
use of hidden-line removal, colors and textures for the surfaces, shading, and cast
shadows.

The most complete kind of three-dimensional model is the solid model, with
images composed of objects which appear solid to the viewer [Ref. 6). Like the surface
models, the solid models use color, texture, and shading to make the images appear more
realistic, which decreases the likelihood of misinterpretation. The potential for solid
modeling applications is driving the graphics technology to produce better and faster
hardware and software to provide these capabilities [Ref. 7). One basic approach to solid
modeling is the constructive solid geometry (CSG) approach, also called the building
block approach [Ref. 8). In this approach, the engineer builds a model out of solid
graphic primitives such as rectangular blocks, cubes, spheres, cylinders, and pyramids.
An advantage of this approach is the ease in which a precise solid model can be
constructed out of the primitives by adding, subtracting, and intersecting the components.

4. Interfacing CAD Systems

A lot of effort has been put into the development of standard interface
specifications to improve communication of product design data between and within
systems. Included in these specifications are the exchange format specifications, the
geometric modeling interface specifications, and the database interface specifications.
Two projects involving exchange format specifications are the Initial Graphics Exchange
Specification IGES) [Ref. 9] and the Product Definition Data Interface (PDDI) {(Ref. 10].

1

The IGES specification is considered an industry standard for the exchange of data
between systems produced by different vendors. The PDDI specification, sponsored by
the US Air Force, provides information such as tolerances, features, geometry, topology,
and part control needed by manufacturing functions.

The major geometric modeling interface specification project is the
CAM-International sponsored Application Interface Specification (AIS) [Ref. 11]. Their
objective is to provide an interface between functional application programs and
constructive solid geometry modeling systems.

One of the database interface specification projects was done at Rensselaer
Polytechnic Institute, Troy, NY, as a Ph.D. thesis involving the development of a
language for the description of data exchange between heterogeneous CAD databases
[Ref. 12].

C. COMPUTER AIDED MANUFACTURING

Consider Computer Aided Manufacturing (CAM), consisting of industrial
engineering, process planning, numerical control (NC) machine and robot programming,
quality control, master scheduling, and material requirements planring, as shown
previously in Figure 3. We will concentrate our discussion on the functions most likely to
be affected by the introduction of automation, namely process planning, NC
programming, master scheduling, and material requirements planning., Information on the
other aspects of CAM can be found in [Ref. 13].

1. Process Planning

The production cycle begins with the planning of production processes and
determination of production conditions for machine operations. Traditional process
planning is an industrial engineering activity which is performed after product design and
before production. Engineers examine a bill-of-materials (BOM) and the design
specifications and determine which operations are to be performed for each part on the
BOM, which machine will be used for each operation, and the details associated with

12

tooling and other production processes. The results of the process planning function are
used by production personnel to manufacture the product. Since process planning is the
basis from which other manufacturing decisions are made, any error made at this point
will be propagated and compounded in the subsequent manufacturing functions. Process
planning is typically performed by the best manufacturing engineers, those with the most
experience. The seniority of these engineers poses a problem because retirements
frequently exceed recruitments for process planning positions, creating an ever-increasing
gap between the number of process planning jobs and the number of qualified engineers
available to fill those jobs.

The automation of process planning functions has been hampered by a limited
understanding of the skills used by human planners and the fact that existing tools to
support process planning are only partially successful. Further problems occur because of
the dynamic nature of process planning functions; inputs change frequently, outputs serve
many types of users. Most automation attempts focus on process planning as an interface
between product design and production, its traditional role [Refs. 14, 15]. These systems
mimic the way process planning was previously done, replacing human process planners
by automated and sometimes expert systems. The integration of design and
manufacturing functions in this way further compounds the islands of automation
problem associated with the introduction of automation into the factory [Ref. 16]. Other
attempts to use artificial intelligence have to deal with a solution space which is
well-populated because of the number of parameters involved in the manufacturing of a
product. In addition, the solution space is discontinuous; a change in a tolerance may or
may not cause a change in the process plan and a change in material type could have the
same effect.

One of our objectives in this research is to provide a mechanism which will
ameliorate some of these problems. We will show that the data model which we propose
for the product design environment can be adapted nicely to the process planning
environment, which is the heart of computer aided manufacturing.

13

Automation has been used to try to create an efficient PP system. The
solutions obtained fall into two groups, based on the way they derive a process plan. The
first, the variant system, uses parts classification with group technology to create a new
process plan from an existing template [Ref. 17]. The template represenis a standard
process plan for a group of products which have been classified into the same family.
When the production requirements for a product differ from the general requirements of
the family to which it belongs, the template is modified to create the process plan for that
product.

An alternative approach is to generate an individual PP for each product from
scratch, known as the generative approach [Refs. 17, 18]. In a generative system, the
knowledge about how products should be manufactured is stored and used with
algorithms to create a process plan. A generative system normally starts with design
information about the components of a product, information about material types and
their usage in manufacturing, and synthesizes an optimal PP. In general, systems using
the generative approach are limited to a small range of manufacturing processes because
of the complexity of the knowledge involved.

The major disadvantages of the variant method as compared with the
generative method include difficulty in accommodating the numerous combinations of
geometry, size, precision, material, quality, and shop loading, and the enormous on-line
database requirements to accommodate the stored plans.

2, NC Programming

The concept of controlling machines by programming them with a series of
alphanumeric codes emerged in the U.S. in the early 1950's [Ref. 13). The concept is
fairly simple: control the machines using numbers to represent a desired function (e.g.,
switch on the spindle, retrieve tool X, rotate the robot wrist by 30 degrees, etc.) on a
predefined coordinate system. These computer-controlled machines can be classified into
categories based on the method by which they process workpieces.

14

Point-to-point controlled machines move a slide to a discreic coordinate point
and this movement occurs with the machine tool disengaged, i.e., the tool is never in
contact with the workpiece while the slide is in motion. Typical examples of this type of
machine include an NC coordinate drilling machine with an NC controlled xy table.

In contrast to point-to-point machines, straight-line control systems allow the
tool to be in contact with the workpiece while the slide is moving, but the movements are
always parallel to the axes of the machinc. A typical example of this type of machine is
an NC milling machine with a traverse table.

Continuous path controlled machines follow a mathematically prescribed path
where anywhere from two to six axes are controlled simultaneously while the tool is in
contact with the workpiece. This type of machine normally employs sensors to monitor
and control the operation while enhancing the safety and reliability of the machine
[Ref. 19]. A typical example of this type of machine is an NC spray painting robot.

3. Master Scheduling

Scheduling is a process that relates specific events to specific times and/or time
periods. This relation involves the sequence and timing of assigning resources (i.e.,
machines, employee, etc.) to specific orders for products. Scheduling gets its prominence
from the effect that misutilization of resources and missed due dates have on the
profitability of a manufacturing company. Due to increasing costs and shrinking market

shares, a lot of emphasis is being put on this aspect of manufacturing.

The scheduling of the processes required for the manufacturing of products
involves simultaneous consideration of the processes to be performed and the resources
they require. The determination of the appropriate processes for a given product is made
during the process planning phase of product development. The scheduling problem is to
utilize resources as efficiently as possible while completing all product development as
closely as possible to their due date, minimizing in-pro:ess inventory. Resources to be
scheduled include machines, tools, raw materials, materials i1 progress, storage facilities,
transportation facilities, and labor. The labor resources will generally have variable

15

m -

capacities while the machine resources will have relatively fixed capacities. The
scheduling problem assumes each resource has an operating capacity at each point in
time.

! Several factors influence the approaches to solving the scheduling problem.
First, combinatorial complexity occurs in scheduling because of the large number of
schedules which assign a set of jobs to a set of resources. The scheduling problem is a
classical application area for operations research optimization techniques and is generally
known to be NP-complete [Ref. 20]. That is, even if an optimal solution could be found,

the amount of time required to compute the solution would make this type of scheduling
impractical. Hence, the operations research approaches generally produce sub-optimal
results.

Secondly, uncertainty is prevalent in the scheduling problem because of the
unforeseen events, such as machine failures, which would disrupt a schedule and create a
whole new scheduling problem. Even though all of the disruptive events can’t be
predicted in advance, some approaches build slack time into the schedule to allow for

some of them.

The current approaches to the scheduling problem can be classified into several
categories, including opportunistic, optimization-based, and expert system-based. We
will briefly describe these approaches to provide a means for comparison with our

approach.

In the opportunistic approach, the number of possible schedules is reduced
prior to execution using knowledge of the current operating conditions. Once schedule
execution begins, choices are made among the alternative partial schedules so as to
maintain steady progress while maintaining the greatest number of future choices, thus
preserving flexibility in the system. In [Ref. 21], off-line reasoning is used to select an
appropriate group of partial schedule orders to be passed on-line when schedule execution
begins. Combinatorial complexity is managed by not selecting or pruning a particular
schedule from the set of possible schedules until there is good reason to do so.
Uncertainty is managed by preserving flexibility with the idea that if enough options can

16

be maintained, there will always be a way to make progress in spite of the unforeseeable
problems.

The optimization-based approach formulates the scheduling problem as a linear
optimization problem and solves the problem statically using combinatorial optimization
techniques such as dynamic programming and branch-and-bound. The basic problem
with this approach is that the optimization techniques are used statically, that is, the entire
schedule is optimized for all products concerned using the current operating conditions.
When something happens on the shop floor such as a machine failure, a whole new
optimization problem exists and the schedule has to be redone.

Expert system approaches generally use heuristics which reduce the number of
possible schedules and make the scheduling problem solvable. Alternative strategies
include the use of scripts which contain the appropriate operators for a particular
scheduling situation, and constraint-driven techniques, where domain knowledge is
represented as constraints which bound and guide the search for a feasible solution, This
approach continually reduces the number of possible schedules until one acceptable
schedule remains. If an acceptable solution is not found, constraints are relaxed until

acceptable alternatives are produced.

Almost all of the previously mentioned approaches use rules to establish the
relative priority of jobs to be processed through a given work center. Some of the rules
used include giving priority to the job with the earliest due date, shortest processing time
for the work center in question, first-come-first-served, least slack time remaining (time
until due date minus process time remaining), and least critical ratio (time until due date
divided by process time remaining). No single rule is suitable for all situations, each rule
has its merits and drawbacks. For example, using the shortest processing time rule will
generally result in the lowest manufacturing lead times and the lowest in-process
inventory, but long processing jobs will always lose out, and may never get to the front of

the queue without some type of intervention.

17

Do b s ANmE g

4. Material Requirements Planning

The objectives of Material Requirements Planning (MRP) in CAM are to plan
and release production orders, focus on orders requiring attention, and ensure that all
parts, both manufactured and purchased, are available when the production schedule
requires them. MRP incorporates long-range business strategies, short-term tactical plans,
master schedules, and feedback on performance [Ref. 22]. The input to the MRP process
is the master schedule containing information on the quantities of each ordered product
and the dates they are scheduled for production. MRP uses bill of material, inventory
status, and order lead time information to generate a more detailed production schedule.
As production proceeds, data on the finished products are fed back into the system and
the process starts all over again.

D. FLEXIBLE MANUFACTURING SYSTEMS

A flexible manufacturing system (FMS) is a computer-controlled configuration of
semi-independent workstations and material handling systems which is designed to
efficiently manufacture multiple products at low to medium volumes. A typical
manufacturing cell consists of a numerical control (NC) machine, tool machine, a tool
magazine, a robot controlled (RC) handling device to refill the magazine, and a system for
part supply. The material handling system is responsible for part transportation, raw
material and final product transportation, and storage of workpieces, empty pallets,
auxiliary materials, waste material, fixtures, and tools. One aim of using FMS technology
is to combine the benefits of a highly productive, but inflexible transfer line with a highly
flexible, but inefficient job shop.

FMS technology changes the production philosophy of a shop from the traditional
Just-in-Case to the innovative Just-in-Time (JIT) philosophy. The Just-in-Case approach
complicates the entire production process because of the need for buffering inventory at
every point where production could be interrupted. Raw materials, (raw) material in
progress, work in progress, finished parts, and finished products are held "just in case”
interruptions occur. The recognition by managers that elimination of the buffered

18

inventory would significantly cut costs led to the adoption of the Japanese Just-in-Time
production system. Other key technologies which similarly reduce costs, enhance
productivity, and operate within the FMS framework are Group Technology (GT) and
Cellular Manufacturing (CM).

1. Just-in-Time

The main objective of JIT is the elimination of waste, where waste is defined as
any activity which does not add value to the product [Refs. 23, 24]. The types of
activities which fall into this category include transporting materials and parts, storing
inventory, inspection and quality control (as a separate activity), and machine setup. JIT
changes the emphasis in production from producing quantity to producing quality.

A partial solution to the main objective is to minimize manufacturing
throughput time. With traditional approaches, production lots spend most of their time in
queues, waiting to be worked on [Ref. 25). Many manufacturers are looking at cellular or
group technology concepts to improve material flow and reduce setup time, which will
improve throughput.

2. Group Technology

Group technology (GT) is a coding and classification system used for
combining similar, often-used parts into families. The use of GT helps to standardize the
fabrication of similar parts, allowing them to be retrieved and processed in an efficient,
economical way. Depending on the type of GT implementation, parts can be grouped
into families in different ways. One common type of GT places parts in a family when
they share similarities in their design. Some of the attributes used in this grouping include
the part’s basic external shape, basic internal shape, length-to-diameter ratio, and material
type. A second type of GT uses manufacturing attributes to classify parts. Among the
attributes considered in this case are the major process to be performed, minor processes
to be performed, machines and tools used, and operation sequence. In this second GT
coding scheme, parts whose major process is dnllmg holes are separated from those
whose major process is boring holes.

19

e A T - ©

The use of GT promotes standardization in manufacturing, which eventually
translates into improved efficiency and reduced production costs. Jigs and fixtures can be
designed to accommodate parts families thereby reducing setup time and costs. Another
benefit of the use of GT is the reduction in complexity and size of the parts scheduling
problem brought about by grouping parts into families. A 70% reduction in production
time, 62% reduction in work-in-process inventories, and 82% reduction in overdue orders
has been reported in {Ref. 26]. The time and cost associated with the process planning
function itself can be reduced through the standardization achieved as a result of using
GT.

3. Cellular Manufacturing

The concept of group technology is closely related to that of cellular
manufacturing (CM). In CM, the manufacturing resources are divided into production
cells. Each cell is designed to produce a set of parts that require similar machinery,
tooling, machine operations, and/or jigs and fixtures. The objective of CM is to go from
raw material to finished part within a single cell.

While the concept of CM is theoretically appealing, in practice there may be
conditions under which it may be impossible to employ. For example, there are always
products to be produced which can’t be associated with a specific production cell. In
addition, there may be machinery which can’t be placed in any one cell due to its general
use, such as a spray painting booth. CM technology thus far has been applied to a limited
number of applications, the majority of which are chip producing, metal fabricating, and
assembly operations [Ref. 27).

E. BUSINESS DATA PROCESSING

The business data processing functions necessary to support the product design and
manufacturing processes include customer order processing, production of a bill of
materials for each product, capacity planning and control for the shop floor, inventory

control, purchasing, and product costing tasks. Other functions are included as well, but
are either well known or well-explained in other references [Ref. 13].

Customer order data is used for long-range planning as well as for material
requirements planning. The long-range planning includes providing forecasts for future
orders. The short-term planning provides information for capacity planning and
scheduling of resources.

Capacity planning provides data on the required machines, personnel, equipment,
and parts inventory required to manufacture products. With the JIT philosophy, a primary
concem in capacity planning is the amount of inventory to be held. Frequent checks must
be made, comparing the actual on hand levels to the planned levels, to maintain control.
Again, minimizing inventory levels keeps inventory storage costs, related capital
investments, and taxes as low as possible.

A bill of materials is a description of a designed product in which the relationships
between components, assemblies, and sub-assemblies are given in the form of a list. The
list contains information such as a part number, part description, and quantities of the part

for the entire product.

Inventory control is closely related to capacity planning. Inventory items consist of
raw materials, work in progress, parts in progress, finished products, and parts purchased
from other vendors. Besides keeping inventory levels as low as possible, inventory
control includes the administrative aspects of inventory such as recording current stock
levels, producing purchase requests, processing customer order and shipment information,
forecasting future inventory requirements, and handling the inventory portion of the
financial activities (accounts payable, accounts receivable).

Product costing involves determining the cost of every activity related to a given
product. Every part of the factory that performs these activities has to determine the cost
of doing so. Inaccurate product costing results in erroneous profit reports and
misrepresents the profitability of products and manufacturing resources to the
management of the firm. In addition, the impact on profit can not be assessed, which

21

€ N L S —————— -

Y

. R S Sap e

means that management decisions will be based on incomplete information and may not
take advantage of fluxuating costs appropriately.

F. SURVEY OF AUTOMATED SUPPORT FOR MANUFACTURING

The best motivation for our work can be found by surveying previous research
projects and providing an analysis of them. These research projects can be divided into
three categories. The first, function-specific, consists of database work which supports
one of the basic manufacturing activities described previously. The second,
application-specific, consists of database work which supports particular application areas
such as VLSI design. Projects in the third category assume that the database support for
manufacturing is already adequate.

1. Function-Specific Support

a. Support for CAD

The manufacturing function which has been the subject of the majority of
studies concerning the application of database technology is computer aided design. As
automation of the design function increases, emphasis is shifting from use of computers
as straight numerical computing devices to the definition, manipulation, and enforcement
of complex relationships among design objects [Ref. 28]. The potential for computers to
assist engineers in performing design functions is placing a new requirement on data
management systems to do more than store and retrieve ordinary textual data.

One aspect of the design function which has been studied is the concept of
combining a set of engineering constraints with a database of engineering data [Ref. 29].
These constraints deal with the semantics of data and therefore define the limitations on
the values that the data can take on. The ability to enforce these constraints determines a
databases’s integrity [Ref. 30). Integrity checking has traditionally been performed by
application programs, not by the data base manager. To ensure the correctness of design
data, constraint management capabilities are being incorporated into engineering design
database management systems [Refs. 31, 32].

22

————————

B

Another extension to the traditional database management systems allows
for the support of abstract data types to permit the use of new data types such as polygons,
rectangles, and text strings [Ref. 33]. Current database management systems support the
use of integers, floating point numbers, and character strings, all of which are widely used
in business data processing applications. To properly model the semantics of design
objects, new abstract data types are necessary.

An alternative approach to modeling the semantics of design objects was
proposed which treat the features of the design object as primitives [Ref. 34]. The
features which a designer uses are determined by the application domain he is working in.
For example, when designing a casting, knowledge about features such as slabs and holes
are useful since these features logically symbolize casting applications in terms that the
designer understands. In this designing-with-features [Ref. 35] approach, a features
database is used to store information about the features and their relationships. Standard
operators exist to manipulate these features and relationships to build more complex
design objects.

The Integrated Programs for Aerospace-Vehicle Design (IPAD) project is
yet another approach to the limited data types inherent in the traditional database
management systems [Ref. 36]. The IPAD project designed and developed a geometry
data manager with special software driver routines which make the geometric objects
available to application programs. This project is one example of many available where
manufacturing companies have developed in-house systems to support manufacturing
functions.

[Ref. 37] and [Ref. 38] introduce the notion of complex objects as an
extension to the traditional relational system. The complex object crosses relation
boundaries and groups related tuples from any number of relations and forms a hierarchy
with a root tuple that defines the object. The defined objects are manipulated by the SQL
language using minor extensions. Tuples in the database system are divided into two
parts. The first part contains the data normally found in the data base - the data which is
of concern to the designer. The second part of a tuple contains pointer information that is

23

e S G ——

used to link tuples belonging to the same object, information which is of no concern to the
designer.

A similar extension to the traditional relational model allowed the
integration of a constructive solid geometry [Ref. 8] scheme with a relational database
management system. The SEQUEL query language was used by this particular system
and required significant augmentation to support it. This approach has additional
overhead in that the constructive solid geometry grammar must be converted into a
generic data scheme which can be manipulated by SEQUEL. [Ref. 8] describes this
conversion process as "computationally tedious”.

b. Standalone Support for Other Functions

The Ford Motor Company initiated a project to develop a manufacturing
database in response to their Basic Manufacturing Division’s need for an automated
system to support retrieval of process plans and detailed tooling and machining operations
[Ref. 39). This project used a relational database management system as the focal point
of their manufacturing information system. The role of the database management system
in this project was to replace a similar system in which manufacturing data was handled
manually. The limited scope of application of the database permitted usage of the
traditional relational system without any extension or enhancement.

The potential for database applications in flexible manufacturing systems
is greater than for possible applications in standard manufacturing functions because of
the highly automated nature of the machines and transportation systems employed in a
typical FMS cell. In [Ref. 40], the layer concept used within various areas of computer
science, such as operating systems, is adapted to FMS. Classes of objects are formed with
respect to their common properties and are stored using a relational database system with
a scheme wherein one relation represents one object class.

Process planning has been defined to be "sitvated at the information
crossroads between product design and the shop floor" [Ref. 41]. The use of computers
in process planning is natural because of their ability to make the numerous comparisons

24

m L — -

necessary to formulate the best process plan in an efficient manner. Numerous projects
have been initiated which apply database technology to the process planning problem.
Lockheed-Georgia’s Genplan system [Ref. 41] is a generative process planning system
which has the logic and rules of manufacturing built into it. Genplan uses a relational
database system to capture the data about manufacturing entities and their relationships
and intends to use a knowledge-base management system [Ref. 42] to keep that data
current. Several other projects have taken the same knowledge-based approach to process
planning [Ref. 43,44).

Database management systems have also been applied to
non-conventional machining processes to store machinability data [Ref. 45]. This
machinability data is used to select metal cutting parameters based on the machining
process to be performed and other major criteria such as accuracy, surface finish, power
consumption, or economy. Although machining data handbooks satisfy most of the
requirements for conventional machining processes, the automated systems support
non-conventional processes and optimize the selection of parameters, something that the
handbooks cannot do.

2. Application-Specific Support

One of the earliest efforts to develop an advanced data management system to
support advanced applications concentrated on the implementation of a CAD database for
the VLSI design environment [Refs. 46, 47, 48). VLSI design was chosen because the
products in that environment are typically large, complex, with components
interconnected in a potentially complex manner, and therefore could not be handled by
the available database models. Although some of the earlier work used the relational
model in the underlying database system, it was recognized that this model doesn’t
sufficiently capture the relationships between different relations, a fundamental
shortcoming of the relational model [Ref. 49]. Later efforts sought to overcome this
problem by using an extensible object-oriented framework to model the VLSI design
environment [Ref. 50].

Other application-specific projects have emerged in the areas of welding [Ref.
51], metrology [Refs. 52, 53], and chemical process plant design [Ref. 54], to name a few.
Weldselector [Ref. 51] used an expert system approach to advise welding engineers on
the selection of materials used to join metals, an ordinarily complicated task which is
affected by factors such as the chemical and physical composition of the base metals, the
position of the weld, and the degree and character of atmospheric contamination. The
Weldselector program is a front end to a complex data base of information on a wide
range of base metals, e.g., over 900 varieties of steel alone. In [Ref. 52] and [Ref. 53],
research on the Automated Manufacturing Research Facility (AMRF) project at the
National Bureau of Standards is presented. A major goal of this research is to develop a
small batch manufacturing system to support rescarch and experimentation in automated
metrology (the science of measurement) and interface standards for the factory of the
future. The major objective of the chemical process plant design project [Ref. 54] was to
specify an overall systems architecture which truly reflected engineering design practice
(the concentration of CAD work at the time was on VLSI design). This architecture was
composed of individual databases to support project-wide applications, work area
applications, and other smaller support and control applications. The research report was
only a general overview of the project -- little, if any implementation work had been done.

3. Other Automated Support

The research projects included in this category include work on communicating
manufacturing data using local area networks [Ref. 55], defining exchange formats and
interface standards for communicating manufacturing data [Refs. 56, 57, 58], plant-wide
computer control [Refs. 59, 60}, use of engineering databases for decision-making
[Ref. 61], and the use of browsing techniques in manufacturing databases [Ref. 62].

The work on local area networks proposed using distributed computer systems
to place processing power where it is needed in the factory. The term "distributed” is in
contrast to the "host type" architectures [Ref. 55], which are centralized computer systems
supporting the entire spectrum of manufacturing functions.

DAt . 4

Several exchange formats and interface standards have been proposed for
communicating manufacturing data between and within design and production functions.
[Ref. 56] discusses the requirements for such standards but acknowledges that: "The
current status of product data communication efforts shows the need for more efforts for
enhancing the interface specifications and turning them into standards.” One such
standard is the Manufacturing Automation Protocol (MAP) [Refs. 57, 58], a network
architecture whose goal is to operate in a setting where products could be processed,
assembled, and prepared for shipping without human intervention. The cost of installing
MAP will limit its use to the automobile and aerospace industries [Ref. 57].

The use of computers to achieve plant-wide computer control is promising due
to the increasing use of automation in factories. To reach this goal, disparate processors
from different vendors must be linked to control both continuous and discrete
manufacturing processes simultaneously [Ref. 59).

Since the plant-wide computer control system will always be distributed to some
degree because of the workings of the principles of locality and of autonomy, a good
communications system will always be the heart of the overall control computer
network. Therefore, a major disappointment to this author in reviewing the current
progress and trends in the development of the new distributed control systems of the
process control systems vendors, and indeed of the whole of the process control
communications field in general, is the very wide variances in design and the
consequent lack of standardization in their intra-system data highway offerings with all
computer control systems but particularly with the new product line offerings now
available. [Ref. 60].

G. SUMMARY

We have examined the role that automation plays in the operations of a
manufacturing company by describing the major activities that make up the product life
cycle. We have surveyed some of the current automation support available for these
various activities. Our objective in this chapter was to introduce the state-of-the-art
concepts and terminology used in the manufacturing environment, many of which will be
used later in this dissertation.

III. COMPUTER INTEGRATED MANUFACTURING

A. BACKGROUND

The manufacturing industry is heavily influenced by pressure from the marketpluce
to reduce product prices while simultaneously increasing quality and responsiveness to
customer demands. Many manufacturing companies, unable to keep the pace of change,
are finding it more and more difficult to remain competitive. Solutions have been offered
by manufacturing equipment vendors, computer manufacturers, and consultants to the
problems of dealing with the broad, pervasive changes which are necessary for survival.

Manufacturers have turned to the computer, because of its widespread applicability,
as a means of easing the pressure. Most of the applications to date have been aimed at
specific manufacturing functions, such as engineering design, process planning, numerical
control, etc. The increased use of computers in these specific areas has, in general,
produced lower prices and productivity increases. However, in most cases, the actual
benefits realized have been significantly less than expected. The application of computers
in these specialized areas forms islands of automation which have contributed formidable
problems in the attempt to produce further gains.

The major problem has been that the automated machines, control devices, and
computers which form the islands of automation are acquired over time from different
vendors and are unable to communicate or exchange data with other systems [Ref. 2].
This has been a major concern because the existing investments by manufacturing
companies dictate that the multivendor, heterogeneous environment cannot be replaced in
a wholesale manner, except perhaps in a few cases. The inability of these systems to
communicate with one another has severely fragmented the information flow among
manufacturing functions. The solution to restoring communications and information flow

involves the integration of manufacturing functions using the Computer Integrated

28

Manufacturing (CIM) concept. Using this concept, links are formed between existing
islands of automation, gradually evolving towards a totally integrated system.

Manufacturing companies want to link these islands of automation together into a
system that still exhibits special characteristics, allows local control, and achieves high
performance. They also want to have consistent data and control over larger portions of
their operations, which is typical of centralized systems. The variety and complexity of
the islands of automation dictate that the only workable strategy for CIM is a modular
approach to integration.

B. WHAT IS COMPUTER INTEGRATED MANUFACTURING?
There is a wide diversity of definitions of CIM in the literature. Included are:

(1) "A collection of machines tied together by a material handling systems and
controlled by a single computer or hierarchy of computers.” [Ref. 63];

(2) "A production facility that consists of a group of process equipment units such as
machine tools, auxiliary equipment (inspection machines, washing stations, etc.), linked
with an automatic materials handling system that reaches every process station, the entire

facility being integrated under common computer control.” [Ref. 64];

(3) "CIM is the integration of key product-related data in a company, where the
integration of various computer-based automation activities leads to improved
productivity in all business areas from marketing to product shipment." [Ref. 65];

(4) "CIM is the vehicle that links the operations of the entire company together
which results in a cohesive system." [Ref. 66];

(5) "CIM is a rounded concept that rests on a central manufacturing database.
Linked to this database will be the key functions of engineering design, manufacturing
engineering, factory production, and information management."” [Ref. 67];

(6) "Computer integrated manufacturing is the automation and integration of the
business of manufacturing from product design to distribution.” [Ref. 68].

The first two definitions imply that CIM applies to a given set of machines, such as
would be found in a FMS cell. They also emphasize the material handling system and
common computer control. Both of these definitions limit themselves to a subset of the
factory floor. The third and fourth definitions broaden the scope of CIM to include
business and other non-engineering/production functions. The fifth definition adds the
concept of a centralized database system and the sixth stresses the role of automation as

an essential element of CIM.

Webster’s Dictionary defines integrated as unified or united. We maintain,
therefore, that the "integrated" in Computer Integrated Manufacturing should refer to the
unification of the processes in the factory through automation of the data interactions
between these processes. Our use of the term Computer Integrated Manufacturing or
CIM uses the word manufacturing in the broadest sense to mean the use of automation to
support all product life cycle activities, not just those concerned with the production phase
of that cycle.

No matter which definition is used, CIM has several objectives which are provided
for in all of the above definitions. One objective is to remove human intervention which
normally results in improved quality [Ref. 1]. Another objective is to manufacture
products in a flexible manner at minimum cost. Minimizing interruptions in the
production process is sometimes yet another objective. Simply stated, the goal is to
complete the production of an item in the simplest and most timely way, which will
happen when each process flows automatically into the next, without interruption. Once
CIM is implemented, the benefits will include real-time, on-line access to all data by the
people and processes which need that data, higher quality, shorter design/production cycle
time, efficient production of small batches, and faster incorporation of design changes
into the system. All of these benefits mean better response to market demand for

flexibility, quality, and fast delivery at the least cost.

C. CURRENT APPROACHES TO INTEGRATION

Computer Integrated Manufacturing uses automation to achieve integration in a
manufacturing enterprise. The ideal CIM system would truly integrate Computer Aided
Design (CAD), Computer Aided Manufacturing (CAM), a Flexible Manufacturing
System (FMS), and business data processing functions. Currently, each of these
components is highly specialized and automated, but not fully integrated [Ref. 1]. We
will compare three alternative approaches to achieving full integration using database
technology. High-level integration interfaces one component of CIM (CAD, CAM, FMS,
or business) to another by automating the data interface between the two components.
Integration by centralized database support uses a database management system as the
hub of the overall manufacturing system so that the data which is output from a given
function is available to any other function that requires it. Low-level integration
standardizes the data interactions between manufacturing functions using a distributed
database management system so that one function can access data produced by another

function.

1. High-Level Integration

The first approach we will discuss can be described as the high-level
interfacing of the four main components of a CIM, i.e., CAD, CAM, FMS, and a business
data processing system (see Figure 5). The primary motivation behind trying to provide
for integration in this manner is to utilize as much of the existing automation investment
as possible. In addition, given the amount of time which a CIM would take to implement,
this may be a "quick fix". While this approach includes the most desirable form of
coupling, data coupling, which occurs when all data required by one function is explicitly
passed by another function, the transformations required to provide that coupling are
costly in terms of execution time. These transformations are implemented by translators
which take output data from one component and convert it into the form necessary for use
by another component. The translators would operate in one direction only and would
not provide the degree of interactivity normally required for effective decision-making.
Bidirectional communication between two components would require two translators. In

3

M 2n aam . g

o
®

Figure 5. High-level Integration

this high-level approach, the workings of the low-level functions within a component are

hidden from the other components and their low-level functions.

Several research projects have taken this approach. [Ref. 69] proposed linking
islands of automation using three separate interfaces. The first interface, between material
requirements planning and CAD, would be used to communicate bill of material data
from CAD to MRP. The second links MRP and the automated storage and retrieval
system to automatically transfer pick requests from MRP to the retrieval system, in lieu of
manual communication. The third link, between MRP and automatic test equipment,
serves to feed measurement data generated by the test equipment to the MRP system for
quality control functions.

The Hewlett-Packard Company produced a system called DesignCenter [Ref.
70] which provided design acceleration tools and links between various design functions.
One link was established between software design and hardware logic design and
simulation (CAE). A second link was used between CAE and CAD, and the third was
used between CAM and the board testing function. Although this system served mainly
design functions, the approach used to implement the links is analogous to the high-level
interface approach.

[Ref. 71] discusses the link between JIT and CIM and the impact that correct
scheduling rules have on the JIT philosophy. As a premise to this discussion, the concept
of high-level integration of CAD and CAM is introduced. A similar approach to the

P —

integration of CAD and CAM is taken in [Ref. 72], which proposes the use of software
translators to communicate among CAD and CAM databases.

This approach to integration should be viewed as a short-term solution. Even
though some increases in productivity and efficiency may be realized, it still has the
disadvantages associated with solving localized problems, the major problem being that it
doesn’t integrate the functions in the context of the entire manufacturing process.

2. Integration by Centralized Database Support

An alternative to the previoué approach is to integrate the four main CIM
components using a centralized database (see Figure 6). This alternative is generally the
approach taken by the process-oriented integration proponents because of the ease of
query processing and performance of database administration functions. This alternative
is normally unrealistic due to the heterogeneity of the functions to be supported [Ref. 16).
In addition, concurrency control is complicated due to the need for prioritization of
real-time access requirements. In a sense, this alternative provides too much integration.
Corporate planners, who normally are interested in the business data processing
component, e.g., summary information about shop floor productivity, have no interest in
data such as the maintenance status of a machine on the shop floor, even though the

information is readily available.

©, ©

~

PN

&

Figure 6. Centralized Database Support

The Boeing Commercial Airplane Company proposed an approach which used
a geometry engine as the nucleus of the system [Ref. 73]. This geometry engine consists
of a user interface, a data modeler, a local data manager, and a communications processor.
Surrounding this nucleus are applications modules performing such functions as tool
design, production drawing, and numerical control programming. Each module is
independent of the nucleus, but uses the same data modeler, data manager, and
communications processor. The output of the CAD/CAM geometry engine will go into a

common data management system.

[Ref. 74] supports the idea that "The most essential part of any CIM system is
the common data base that includes both geometric and non-geometric product
information." The reason that the data base system is so important is because "the greatest
productivity gains and largest cost savings can be achieved only through the development
and use of a common geometric data base for design, analysis, drafting and production.”
The centralized approach eliminates the lengthy process of re-creating basic design data
and avoids the errors due to transcription of this data from one system to another.

Another benefit to the centralized approach is that communication between
design, production, and their various functions and activities is improved as many of the
traditional barriers are broken down. Two fundamental aspects of the design and
manufacturing process benefit from this centralized approach. First, the entire
manufacturing process, from product design to service support is a monolithic, indivisible
function [Ref. 75]. The interrelationships of all the various components dictate thai no
single portion can be considered on its own, but must be considered in the context of the
entire process. Second, the common ingredient in all manufacturing operations is the data
which is created, stored, analyzed, transmitted, and modified.

The Computer Assisted Document Management and Control (CADMAC)
system [Ref. 76] is one example of the communication of data using a centralized system.
This system stores both computer generated CIM files and raster images of paper
documents in digital form. Once these files are stored in the centralized database, they
can be cataloged, located, retrieved, edited, printed, and distributed electronically, which

LN - .

improves productivity and product quality. The true power of the CADMAC system is
that users can access required documents to answer queries for information abcut those
documents. This capability results in significant time savings by avoiding the manual
searching through files for this information.

The CODASYL database system [Ref. 30] has been used as a centralized
database management system supporting CIM in the metalworking industry [Ref. 77].
Because of the difficulty of navigating through a network database, a more "user friendly"
interface was developed to simplify the work of the applications programmers and the
engineers using the system.

There are many reasons why the centralized database approach is not an
acceptable altemative in providing integration for manufacturing functions [Ref. 16].
Such a centralized system would be responsible for monitoring real-time manufacturing
processes, maintenance of all aspects of the database including static data, e.g., initial
setpoints, alarm limits, engineering unit conversions, etc., and dynamic data, e.g., current
point values, current alarm state, etc., handling operator access to the system, and a whole
variety of other tasks. Few, if any, computers are currently available which could handle
all of these functions in a timely manner [Ref. 55]. Even if such a computer exists, the
use of a single centralized computer poses other problems. A major difficulty with the
use of a single system is the vulnerability to system failure. When all data flows through
a single host, the entire system ceases to operate when that host fails. Some portions of
the factory will still have enough autonomy to be able to continue operating in a
standalone mode, but from an overall control point of view, the system is inoperative.
This problem can be minimized by providing backup computers, but the benefits rarely
warrant the expenditure. Most companies would be tempted to adopt an optimistic
philosophy and disregard the need for backup.

Another problem with a centralized system, already mentioned above, is the
limited capacity that a single machine would have for handling the massive data
communications requirements to support an average sized factory operation. Similarly,
the storage and manipulation of this massive volume of data by a single database

management system would be impossible. The volume of data required in the design

function alone would consume the capacity of most mainframe computers.

If a centralized approach were taken, the diversity of data to be supported
would result in a low degree of semantic expressiveness within the database management
system. The additional semantics required to properly model the manufacturing
environment would have to be provided by application programs which interface to the
database. In this case, which is analogous to traditional data processing, the database
management system is reduced to being a file server for those application programs.

Many people think that CIM means putting all of a corporation’s data on a data
base management system (DBMS). This is neither a desirable nor achievable goal.
The great revolution in mini- and micro-computers was largely fueled by the poor
performance of large shared systems. Even logical centralization of data is a spurious
goal for all data of an enterprise. One should not expect that corporate planners would
be interested in stresses on a part or that an engineer would be interested in the
maintenance status of a machine on the shop floor. Rather, data should be organized so
that people or machines that share a set of functions have access to them. A centralized
data base ignores the heterogenecity of data management strategies and tools used in
manufacturing today. [Ref. 16]

3. Low-Level Integration

The third approach to integration uses a distributed approach to organize the
data, where each low-level function has its own database (see Figure 7). By standardizing
the data interface between functions and databases, a function can access the databases of
other functions since the data access protocol is the same between a function and any
database. This, of course, can be achieved by requiring the databases to support a
uniform data model and language. The question is, which data model and language is
powerful and flexible enough to support various different semantics, or abstraction
concepts, which are inherent in the various manufacturing activities? In other words, is
there a single data model that can capture the data requirements of design, process
planning, scheduling, group technology, etc.?

This standardization would force manufacturing system vendors to provide an
interface with each new product to be used in the manufacturing process. In addition,
standardization would allow application vendors to depend on the data in the system

PU—

$ 1
Industrial Marketing Order
Project Engineering Py Processing
EM FMN
Process
Planning Sales Accounting
Estimating Functions
Design NC Machine,
Enginesring Robot Master lnventory
Programming Scheduling Management

Quality Materials Purchasin,
Control Requirements o
\ oo
Shop F _—
lhmoofl:.:m Shipping
Plant
FMS Control Maintsnance

Figure 7. Low-level Integration

being in the proper form for interface to their products, facilitating development,
installation, maintenance, and flexibility of the user to choose among competing products.
This approach also has the normal advantages of a distributed system, including the
flexibility gained by distributing the data, and the normal disadvantages of a distributed
system, including the inefficiency of querying data distributed over several sites.

[Ref. 78] proposes a distributed approach to CIM, but does not give a definitive
architecture to support it. There is no indication of how the databases should be
distributed or what functions they would support.

This approach is also considered a long-term solution. Again, integration has
to be planned in advance to produce the best results. This approach is advantageous over
the centralized approach because it alleviates the problems associated with a single
centralized database.

D. SUMMARY

In this chapter we discussed the manufacturing industry’s proposed solution to the
islands of automation problem, a concept called Computer Integrated Manufacturing
(CIM). The wide diversity of definitions of CIM leads us to believe that there is no
industry-wide consensus about the definition of the concept. We therefore, adopted a
definition which is consistent with our data-oriented approach. We have also examined
three alternative approaches to integrating manufacturing functions. Of the three, we feel
the low-level approach has the most potential for the long term. The cost of implementing
this low-level approach may make it unrealistic for small and medium-size companies
that cannot afford to ignore their current investment in computers and manufacturing
equipment. The best solution for these companies seems to be the high-level integration
approach we have described. We agree with other researchers that the centralized

approach is not viable and therefore we have not pursued it further.

LY -

IV. DATA MODELING

A. BACKGROUND

It is apparent that an interpretation of the world is needed which is sufficiently
abstract to allow minor perturbations, yet is sufficiently powerful to give some
understanding concerning how data about the world are related. An intellectual tool
that provides such an interpretation will be loosely referred to as a data model. It is a
model about data by which a reasonable interpretation of the data can be obtained. A
data model is an abstraction device that allows us to see the forest (information content
of the data) as opposed to the trees (individual values of data). [Ref. 79]

To better understand data modeling, it is helpful to define what the objects are that

are being modeled. [Ref. 80] proposes the tuple

< object name, object property, property value, time >

as a working definition of an atomic piece of data. This tuple represents an object (object
name) and some aspect of that object (object property) which is captured by a value
(property value) at some point in time (time). The modeling of time is covered in
[Ref. 81] and is beyond the scope of this work. Several data models have been developed
which represent and relate an object name, object property, and property value. One way
of relating data is to categorize them according to their properties [Ref. 82]. In a given
data model, the names of the categories together with their properties is called a schema.
The schema also includes relationship information for the categories and properties.
Figure 8 gives an example of a schema with three categories, employee, firm, and car.
The categories are depicted by ovals, properties by rectangles, and relationships by lines
between the categories they relate to.

A data model defines the rules according to which data are structured and the
operations which can be performed on the data being represented. A structure can be as
simple as a list of objects which can represent a stack or queue, depending on how the
operations are defined to operate on the list. The allowable structures for data within a
data model are static in nature, that is, they are relatively time-invariant, and are normally

defined by a data definition language (DDL). The operations defined for the data model
are dynamic in nature since they cause a change in the various values that the data take
on. These operations normally comprise the data manipulation language for the data
model.

Figure 8. Database Schema

The combination of structure and allowable operations determines a unique data
model. Given the number of possible alternatives, many different data models could be
specified. Practicality and usefulness limit the number of data models which have
actually been used. Three of these, the hierarchical, network, and relational models, are
the most widely accepted and used. These three models will be discussed in more detail
and will be hereafter referred to collectively as the traditional models.

B. TRADITIONAL DATA MODELS

1. Hierarchical

Historically, hierarchical systems are the oldest of the database systems in use,
and the hierarchical data model is the oldest of the traditional data models [Ref. 83]. The
structure of a hierarchical data mode] appears to the user as trees of interconnected
segments (see Figure 9) where the relative order of the subtrees is important. The arcs
connecting nodes in the tree always point toward the leaves and away from the root. The
diagram in Figure 9 represents an intension [Ref. 79] of a hierarchical database. This

EMPLOYEE

m"nﬂmmm

.

WORK HISTORY EDUCATION

company | st | end orad major
name | date | date | &Y school | g | CROTee | o

Figure 9. Intension of a Hierarchical Database

intension describes the structure of the database in terms of its segment types and the
relationships between them.

In this figure, employee, work history, and education are segments. Each
segment is composed of one or more fields. The relationship between the employee
segment and the work history segment is a one-to-many relationship [Ref. 79], that is,
there may be more than one occurrence of work history data for a particular employee.
The same type of relationship exists between the employee segment and the education
segment. The one-to-many relationships are represented by the double arrows in the
intension diagram. Relationships in a hierarchical data model are also called parent-child
relationships [Ref. 83]. In the example above, employee is the parent of both work
history and education (the children). Work history and education are related as
siblings [Ref. 83].

Figure 10 shows a record which is an extension of the structure shown in
Figure 9. An extension of a segment is a group of data items relating to a specific entity.

While the simplicity of the hierarchical model seems attractive, it does have
some limitations. The model only permits representation of one-to-one and one-to-many
relationships directly. Many-to-many relationships require an artificial segment to be
inserted as shown in Figure 11. Here, parts has a many-to-many relationship with

supplier.

41

talmou mmmauu1

[Acme Com [101876 (45077 [16,000 | Eost High [uun 68 [5. {ookegepren |

BayviewCoy 5777 1501 [ravaed Jam2] BT ousine |

| NYU. [Se75]MBA] business |

Figure 10. Extension of a Hierarchical Database

parts supplier

artificial artificial

Figure 11. Many-to-Many Relationships

The only type of relationship which can be modeled in the hierarchical model
are binary relationships between two segments. If two segments are related, only one
relationship can exist between them. One segment must serve as the root to maintain the

tree structure.

2. Network

The most prominent network data model was developed by the Data Base Task
Group (DBTG) of the Conference on Data Systems Languages (CODASYL) and is
known as the CODASYL network data model [Ref. 84]. In this model, entities are
represented by records which are groups of related fields. The relationships between
entities are represented by sets among the record types. Each set has a designated owner

42

-y N

r————-———————'—‘ r< — ~

record type and may contain one or more record types as members. Figure 12 depicts a
sample application modeled as a network.

customers components
oustomer | oustomer part

—~. 7

N. /

Figure 12. Intension of a Network Database

This example contains three record types, customers, components, and CC.
Customers-CC and components-CC are the sets which relate customers and
components, respectively, to CC. Each occurrence of customers-CC consists of a single
occurrence of customers (the owner) and one occurrence of CC (the members) for each
order in which that customer appears. Likewise, each occurrence of components-CC
consists of a single occurrence of components (the owner) and one occurrence of CC (the
members) for each order in which that component occurs. Figure 13 provides sample
data values for this network.

Again, as with the hierarchical model, only binary relationships which are

one-to-one or one-to-many are directly represented in the network data model.

3. Relational

The relational data model is rapidly becoming the most popular of the
traditional models. It differs in several aspects from both the hierarchical and network
models. First, the relational model is based on a theoretical foundation from relational
mathematics. Second, the relational model is more abstract than the other traditional
models. The relational model represents data in a more natural way - closer to the way
the data exists. The hierarchical model requires data to be represented by hierarchical

Figure 13. Extension of a Network Database

constructs, whether that type of construct is appropriate or not, and similarly, the network
model requires the use of the set concept. Instead of forcing an artificial construct on the
user, the relational model reduces relationships to simpler components and then represents
those components directly. The major reason for the increasing popularity of the
relational model is that it tends to simplify rather than complicate the user’s view of the

data.

The relational model is built around the concept of a relation. A mathematical
relation is a set that expresses a correspondence between two or more sets, Si, S2, ..., Sa
[Ref. 79]. An n-ary relation T is defined as a subset of the Cartesian product of its
domains (T € S1x S2x ... x Sp).

The mathematical concept of a relation is used in database theory to define a
database relation. A relation scheme R is a finite set of attribute names {A1, A2, ..., An}.
Corresponding to each attribute name A; is a set D;, 1 £i < n, called the domain of A;.
Let D = D1 v D2 U ... U Dp. A relation r on relation scheme R is a finite set of
mappings {t1, t2, ..., tp} from R to D with the restriction that for each mapping t € r, t (A))
must be in Dj, 1 <i < n [Ref. 85].

A relation scheme appears to the vser as a two-dimensional table of data whose

entries are atomic values. In the standard relational model, no repeating groups or other

e

complex structures are permitted as entries in the relation. In addition, all of the entries in
any one column are from the same domain. The columns of a relation are called
antributes and have unique names. The order of the attributes in the relation scheme is
immaterial. The rows of the relation, called nuples, can also appear in any order, and have
the additional restriction that no two rows in the relation are identical.

Figure 14 gives an example of a relation called STUDENT. Note that this
relation has four attributes, student number, name, academic major, and advisor, and
therefore the tuples in this relation are called four-tuples. The domain of the attribute
student number is the positive integers and the domains of the other attributes are

characters of length 15, 10, and 10 for name, academic major, and advisor, respectively.

STUDENT
:':':w’ name mm::’n'lc advisor
101 Joe Jackson biotogy Smith
1120 Sue Anderson physics Newton
1123 Rusty Springs biology Jones
1205 1. Want Moore english Glover

Figure 14. Relation

The tuples in a relation are identified by the values of its attributes. One way to
identify a tuple is by listing the attribute values for every attribute in the relation. In the
example above, 1120, Sue Anderson, physics, Newton constitutes a unique identifier for
the second tuple since no two rows in the relation can have identical attribute values for
all attributes. It generally is possible to identify a tuple by specifying fewer attribute
values. In the STUDENT relation, the attribute student number alone will uniquely
identify a tuple since each student is assigned a unique student number. Each of the other
attributes alone may not be sufficient to uniquely identify a tuple. Two students could
have the same name and there will surely be a case where two or more students have the

same academic major. The same holds for the advisor attribute. Any combination of one

or more attributes which uniquely identifies a tuple is referred to as a candidate key
[Ref. 30]. In the relational model, one of the candidate keys in each relation is selected to
be used as the tuple identifier and is called the primary key.

One major goal of the relational model is data independence. Data
independence is a measure of a database system’s ability to provide for change in
representation or in content of the database without affecting programs [Ref. 83]. This is
achieved by representing data as relations and deferring the definition of relationships
among relations until execution time, when ecither relational algebra [Ref. 85] or
relational calculus [Ref. 85] can be used to express the relationships using the values of
common domains in the relations concerned. In theory, the data is represented logically
and the operations on the data are represented logically. This is not true of either the
hierarchical or network models. Furthermore, in the latter cases, the user can only process
data using the hierarchical or set relationships defined by the respective hierarchical or
network structure.

4. Limitations of the Traditional Models

The limitations of the traditional models are addressed in [Ref. 49] and [Ref.
83]. The limitations discussed here will focus on those most relevant to the

manufacturing environment. It has been generally stated that the traditional models are
not well-suited for manufacturing applications [Refs. 8, 29, 33, 36, 37, 38, 48, 50, 52, 54,
83, 86]. The two major objections cited are the lack of support for abstract data types
[Refs. 33, 36, 37, 38, 86] and limited semantic expressiveness [Refs. 8, 48, 83, 86]. Of
the two, the limited semantic expressiveness seems to be most serious drawback. Given
the record-oriented nature of the traditional models, the mapping of application semantics
into a low-level record-based structure tremendously limits their semantic modeling
capabilities [Ref. 49]). The simple data structures used by the traditional models to model
semantics often cause loss of information and therefore only support a limited portion of
the application environment semantics [Ref. 87]. The basic problem with the traditional
models is that they fail to distinguish the different kinds of relationships among the
objects in the application environment. The same data structure describes the attributes of

m

of information.

an object, the type of that object, and the relationships between types, again, causing loss

The lack of support for abstract data types results in complex objects from an
application environment being represented by record structures, a correspondence which
is unnatural and difficult for users to cope with. Users should be able to address and

manipulate objects supported by a database system in the same way they are addressed

and manipulated in the application environment, which is the major purpose in using a

data model.

C. SEMANTIC DATA MODELS

1. Background

Semantic data models attempt to provide high-level data structuring features to

improve the expressiveness of database conceptual schemas. This is done by embedding

the semantics of a particular application in the database schema. The overall objective of

the semantic models is to increase database accessibility by end users, many of whom are

not trained in computer science.

In addition to providing for the representation of these semantics, the ideal

CIM data model would provide other features which are not found in the traditional

models. One of these features is the representation of design objects as primitives in the

model, with prescribed "rules” for associating objects with one another. These objects

could be the building blocks from which more complex objects could be built.
Operations defined for the data model would include those for manipulating objects.
These operations would include provisions for adding new objects and modifying existing

ones.

Semantic data models are normally represented by a set of abstraction concepts

which they employ to enhance their modeling capabilities. Many of these abstraction

concepts are rooted in the area of artificial intelligence (AI) known as knowledge

representation, in particular, semantic networks. The main difference between the work

47

e

done in Al and semantic data modeling is that the Al researchers are more concerned with
representing abstract information rather than information structured in a manner oriented

toward database applications [Ref. 83].

2. Abstraction Concepts

a. Generalization/Specialization

Generalization refers to abstraction in which a set of similar objects is
regarded as a generic object [Ref. 88]. Generalization is used to classify objects into
types, which can be classified into other more general types. The generalization
abstraction concepts places the emphasis on the similarities of objects and abstracts away
their differences [Ref. 79]. Figure 15 is an example of a generalization hierarchy for a
subset of a data processing organization. The arrows in the figure indicate the direction of
generalization. For example, employee is a generalization of clerical.

T~
£

B

.

Figure 15. Generalization Hierarchy

One of the benefits of using generalization is that inkeritance can be used
between related types. In our example, all of the properties of employee can be inherited
downward to both clerical and technical, whose properties in turn are inherited
downward further in the hierarchy. If an employee is required by law to be over the age
of 18, then inheritance will stipulate that anyone who is either clerical or technical must

- . —— e

s

— .q g

be over 18 years of age as well. This downward inheritance will always produce valid
results [Ref. 89].

Specialization is the opposite of generalization [Ref. 79]. In Figure 15,
employee is a specialization of person (reverse the arrows in the generalization to obtain
the direction for specialization). One important distinction between generalization and
specialization is that specialization doesn’t always allow for inheritance of properties in
the way that generalization does. For example, if all computer programmers are paid
less than $30,000 per year, it does not necessarily follow that all technical employees are
paid less than $30,000 per year; a systems analyst could be paid $40,000 per year.

b. Aggregation

Molecular aggregation is the abstraction of a set of objects and their
relationships into a higher-level object [Ref. 88]. This abstraction allows a view of
objects from different levels of generality, each with its own level of detailed definition.
A user interested in the overall design could use the topmost level of abstraction, which
would hide the implementation details. This implements the Information Hiding [Ref.
90] principle commonly found in programming language design. The idea is to give the
user only the amount of implementation detail he needs for a particular application.
Figure 16 depicts person as a molecular aggregation of name, address, age, date of
birth, and birthplace. All of these except address are primitive objects, i.e., they are not
further divided. Note that two levels of molecular aggregation abstraction are present in

) e =)
EEEHEE

Figure 16. Aggregation

49

© A s e —————_

Yo,

the figure. The objects whose name appears in upper case are molecular aggregations.
Those in lower case represent primitive objects in this example.

The properties of a type, such as name, address, age, etc., are referred to
as intensional properties [Ref. 91] (intensions) because they are definitional in nature. In
fact, aggregation is the normal means by which we describe or define items, we specify
the properties that the object takes on. The values that these properties can take on, such
as John Jones, 123 Anywhere Street, etc., are extensional properties [Ref. 911 (extensions)
since they are factual as opposed to definitional.

Molecular objects have two description components, an interface, and an
implementation [Ref. 92]. The interface specifies the general function of the object and
the implementation provides the details of the use of the object for a particular
application. The aggregation concept will be discussed further in Chapter V.

c. Association
Association is a form of abstraction in which a relationship between
similar objects is considered as a higher level set object [Ref. 93). The relationship is
regarded as a membership relation. The details of the member objects are suppressed and
the properties of the set are emphasized. Figure 17 gives an example of a country club
with an association of golfers. The properties of golfers are specified to be name,
address, handicap, and annual dues.

count |
t:lub'y
el address gollers
//(>
association
golfer
o) [) [

Figure 17. Association

LI gt -

d. Version Generalizaton

Version generalization is a form of abstraction in which similar objects are
related to a higher level object, gencrally a type [Ref. 92]. A type is an abstraction of the
common properties of its versions. This abstraction features inheritance which is
analogous to that for the generalization abstraction concept. Versions can have two
distinct forms of attributes; those shared with the object type, and those defined to be
unique for each version. Attributes shared with the object type reproduce the interface
characteristics of the object type. Attributes defined to be version specific are the
attributes which distinguish one version of a particular type from another version of the
same type. Figure 18 provides an example of a set of object types and a related set of
object versions. Car and truck are types which are related according to the diagram to
convertible, station wagon, 4 wheel drive pickup, short bed and long bed. In this
example, car would be defined as having either a canvas top or a station wagon top.
There would not be any notion of a standard sedan in this case.

Figure 18. Version Generalization

Versivn generalization differs from the generalization concept defined
previously in that version generalization specifies the relationship between an object type
and its versions, while ordinary generalization is used to specify the relationship between

a type and its subtypes.

51

e. Instantiation/Classification

An object is created by instantiation [Ref. 92]. Both object types and
object versions can be instantiated. Creating multiple instances of the same type/subtype
or version provides for a distinction between the various copies. A version may be
instantiated to provide a local working copy of a previous design, which can be specified
to any level of detail. Types (or subtypes) can be instantiated to produce a working copy
for design work from scratch, in cases where no existing design can be used. Figure 19
shows an object Fred’s Car, which is an instance of type CAR. Fred’s Car would be
produced to provide a working copy of type Car as a starting point in this particular
design. The fact that Fred’s Car is instantiated from its parent type tells us that the
implementation specifications for the final product are not available and will be
developed from scratch. If Fred’s Car were instantiated from Red Convertible instead,
the design would begin from the point in Red Convertible where implementation details
left off, indicating that some similarity exists between the implementation of Fred’s Car
and Red Convertible.

year
make
model type CAR
color
owner
year year
's Car
lhdc:fmnrﬂbb ol pt
type
o _| &R ook CAR
owner owner Fred

Figure 19. Instantiation

- s e e

Classification, the opposite of instantiation, defines an object type as a set
of instances [Ref. 79]. Each instance shares common characteristics with the other
members of the same class. For example, in Figure 20, the instances Joe’s Truck and
Sam’s Truck define the type TRUCK through classification.

Joe’s truck Sam's truck

Figure 20. Classification

f. Version Hierarchy

A hierarchy is formed for the set of versions for a particular type/subtype,
and is called a version hierarchy [Ref. 94]. In this hierarchy, going from a higher level to
the next lower level, we find that more implementation details are specified. The
{ difference between the type/subtype generalization and the version hierarchy is that
different versions of an object have the same set of attributes, and not necessarily the
same values, while different types (or subtypes) will have different sets of attributes from
each other. Figure 21 depicts three version hierarchies. In this case, RANCH is a
subtype of type HOUSE, and two bedrooms, three bedrooms, and four bedrooms are
subtypes of ranch. Each subtype can have its own version hierarchy. The blocks labelled
\ 10x12 Master, 12x15 Master, and 14x18 Master are on the same level in the diagram
because they represent mutually exclusive versions. Each block in the diagram is a
potential starting point for future designs.

patio
garage
bedrooms 2 | [bedrooms 2
bedroom1 |10x 1 bedroom 1 |12 x 15
bedroom2 | 8x 10 bedroom2 | 8x 10
living room Rving room
kischen kitchen
3 ¢
patio patio
grage garage
version version
10 x 12 Measter 12 x 18 Master

subtype
thres bedroom
patio
garage
bedrooms 3 bedrooms 3
bedoom 1 [12x 15 bedroom 1 114 x 18
bedroom 2 | 8x 10 bedroom 2 |8x 10
bedroomd | 8x 10 bedroom3 {8x 10
lving room kving room
kischen kitchen
patio patio
Qarage garage
version version
12 x 18 Master (3) 14 x 18 Master (3)

Figure 21. Version Hierarchy

g. Instance Hierarchy

The instantiation abstraction is extended to form an instance hierarchy,
consisting of different instance alternatives for the same type/subtype or version [Ref. 94].
Figure 22 is an example of an instance hicrarchy for a house being designed for John
Jones. Since Mr Jones is building this house from scratch, the design starting point was
an instantiation from subtype ranch. In the course of designing his house, Mr Jones
wasn’t sure whether he wanted his living room dimensions to be 15x21 or 17x19, two
alternatives represented in the hierarchy. The reason for saving the hierarchy is that Mr
Jones may decide on one size, finish the design, and then change his mind. The hierarchy
would permit him to go back to the point of the decision and re-complete the design,
which may require modification to other room dimensions. All of the information
provided in the original design would be saved in the event he changed his mind again.

3. Survey of Current Semantic Models

Current semantic models include the Entity-Relationship (ER) Model,
Functional Model, SHM+, SDM/Event Model, TAXIS, SAM*, and RM/T. All of these

models use primitives such as entities, events, or simply objects. They also include

provisions for composite objects and attribute specification among the supported features.
Extended semantic models integrate a number of programming language concepts with
database concepts. They also make use of advanced data type concepts such as abstract
data types and strong typing. These extended models include SHM+, TAXIS, and the
SDM/Event Model. Semantic modeling theory is now being applied to particular
application areas such as office automation, VLSI, and cartography, as well as for
traditional data processing applications (inventory, insurance). We will make use of

many of the concepts from current semantic models in the description of our model.

a. Entity-Relationship Model

The Entity-Relationship (E-R) model [Ref. 95] uses a network
representation to model objects (the entities) as nodes and relationships as edges between
the appropriate nodes. This model identifies four levels of views of data which are used

subtype
RANCH

owner Jones
bedrooms 2 instance
bedroom 1 Jones Ho
bedroom 2 ones House
living room
kitchen
patio
garage
owner Jones owner Jones
bedroms 2 instance bedrooms 2 instance
bedroom 1 bedroom 1
{ bedroom 2 Bx2 bedroom 2 7x19
living room |15 x 21 living oom [17x 1
kitchen kitchen
patio patio
L garage garage
J Figure 22. Instance Hierarchy

to support logical and physical database design. The first level, the semantic level, deals
with information concerning the conceptual objects and relationships of interest. The
second level organizes the information modeled in the first level into relations. The third
level is concerned with the access-path-independent storage structures; those not involved

with search or indexing schemes, which are placed at level four.

The E-R model supports many-to-many relationships using the notion of a
relationship set, which is a mathematical relation among two or more entities. Both
entities and relationships have associated attributes which define their properties. The
main use of the E-R model has been in high-level database design [Ref. 79].

b. Functional Model
In the functional database model [Ref. 83], the attributes of an object are

viewed as mappings from that object to some other domain of objects. One unique
characteristic of this model is its integrated view of data definition and data manipulation.
The traditional models separated these two activities into static and dynamic parts. Data
definition, the static part, is done as part of the database design process. Once that
definition is made to the DBMS, data can be entered, manipulated, and output using a
data manipulation language. This is a dynamic activity; it depends on the state of the
database, and changes the database from one state to another.

There are three predominant functional database models in existence. The
DAPLEX [Ref. 96] model uses functions to define types and relationships among objects.
Types are modeled as functions without arguments and relationships are modeled as
functions with one or more arguments. Functions are manipulated using predicates and
can be composed (as in mathematics) to form complex objects.

The Functional Query Language (FQL) [Ref. 97] models an application
using a set of abstract data types and a set of functions defined on those types. In this
model, which is mainly a query language, data manipulation using functions is done
similarly to the way the DAPLEX model does it.

I -

The functional data model (FDM) [Ref. 98] uses a graphical schema with
nodes, which represent types, and mappings between the nodes. The functions can be
many-to-one, one-to-one, or identity functions; can be either partial or total functions,
onto or into, and may use ordinal types as domains. Data manipulation is done by
retrieval and manipulation primitives which treat functions as logical access paths, and
perform ordinary insert/update and delete operations.

c¢. Extended Semantic Hierarchy Model

The extended semantic hierarchy model (SHM+) [Ref. 99] extends the
traditional relational model by providing more domains and data types for modeling
complex relationships, makes a clearer distinction between the schema and database
levels, and provides a constraint facility. SHM+ also employs the generalization and
aggregation abstraction concepts to define type hierarchies and provide an inheritance
mechanism. The subtypes in the hierarchies partition the instances of the parent type and
may themselves be subtypes. With inheritance, some of the attributes of a subtype can be
inherited downward from the parent type, while other attributes are defined specifically

for a particular subtype.

d. Semantic Database Model

The semantic database model (SDM) [Ref. 100] uses the aggregation and
instantiation abstraction concepts and distinguishes between entities, which are nonatomic
abstract objects, and names, the identifiers for atomic objects. This model supports types,
which are disjoint classes of objects, and subtypes, which may overlap. SDM also
employs a grouping type, which is formed by treating instances of a type as subtypes.
Grouping types allow relationships between sets of subtypes having a common parent
type to be created and named. Relationships are also permitted to have attributes
associated with them. Attributes in SDM can be defined as single- valued or

multi-valued.

W———f < ~ -

e. Taxis

The Taxis [Ref. 91] data model was developed to support the information
system design process. Taxis uses an object-oriented framework, where each object in
the model represents a real-world (application) entity or concept, and employs the
aggregation, classification, and generalization abstraction concepts. Transactions, which
are groups of primitive operations, are used in Taxis to model complex activities in the
application environment. These transactions can be organized into subclass hierarchies to

form higher level procedures.

A compiler was written for Taxis which takes advantage of traditional data
management facilities. This implementation decision was intended to decrease the effort
required to produce the compiler [Ref. 101]. The compiler translates Taxis programs into

Pascal/R, which interfaces to a relational database management system.

f. SAM*

SAM* [Ref. 86], which is a refinement and extension of the semantic
association model (SAM) [Ref. 102], includes support for temporal, positional, and
procedural relationships, hierarchies of data structures, recursive definition of objects,
modeling of multiple versions of an object, and complex data types. This data model
distinguishes between aromic and nonatomic concepts. An atomic concept is one which
cannot be decomposed, and is assumed to have a well-understood meaning which does
not have to be defined in terms of other concepts. Nonatomic concepts are defined in

terms of other atomic and nonatomic concepts.

When atomic or nonatomic concepts are grouped to describe a
higher-level non-atomic concept, an association is formed. The types of association
supported by SAM* can be distinguished according to their structural properties,
operating characteristics, and any constraints that users may place on them. Among the
associations supported are the membership, aggregation, and generalization associations,
which are analogous to the abstraction concepts of classification, aggregation, and
generalization, respectively.

—-—Tw-—-———-——“ — —————r

e

C e e gp— - wv——sq-Awwﬂ»—-‘—.

g. Extended Relational Model

The extended relational model RM/T [Ref. 103] extends the traditional
relational model by supporting null values, the aggregation and generalization abstraction
concepts, and a richer variety of objects. Types are represented by relations with an
internal identifier for each instance of a type. Attributes are also represented by relations
with property values for the internal identifiers.

h. Object-Oriented Approach

One of the major distinguishing features of an object-oriented system
from traditional systems is its ability to handle objects of arbitrary type. Traditional data
management systems are limited to objects of type record (they are record-oriented).
Object-oriented systems define types to be similar to abstract data types; i.e., the
properties and operations for a given type are encapsulated. The classification abstraction
concept forms the basis for object-oriented systems, that is, objects are placed into classes
based on their properties, and classes are organized into hierarchies which support
inheritance.

Most of the object-oriented systems are based on the Smallralk [Ref. 104]
programming language. Smalitalk models both entities and relationships as objects. In
addition, classes and properties are treated as objects. When a class is defined, the
variables (properties) and messages (operations) for that class are specified. Once we
know what class a particular object belongs to, we can access the information about the
properties and valid operations for that class. Operations are performed by passing
messages to objects, which results in a response dictated by that object’s properties.

D. SUMMARY
In this chapter we briefly reviewed the traditional data models and discussed their

limitations. Their most significant limitation is the lack of semantic expressiveness which

is necessary to capture the semantics of advanced application areas such as

manufacturing. We discussed semantic data models and the abstraction concepts which
differentiate them from the traditional models.

61

V. DATA-ORIENTED MODEL FOR INTEGRATING
MANUFACTURING FUNCTIONS

A. MOTIVATION

As we stated previously, our approach to integrating manufacturing processes from
a data-oriented perspective considers CIM as the composition of a design phase, a
production planning phase, a production monitoring phase, and considers the traditional
business functions as peripheral to these three phases. Manufacturing processes are
associated with one of these phases based on their type of data usage. The way in which
the basic processes are grouped into these phases does not affect our proposed integration

strategies.

The major advantage of our data-oriented "Approach over process-oriented
approaches is that the integration of product design and manufacturing functions is
considered in the context of the manufacturing system as a whole. The database support
for the manufacturing environment includes the production of appropriate data as a
byproduct of primitive functions such as product design. As soon as a product is
designed, the altermative process plans for that product are immediately known.
Process-oriented approaches regard integration as the automation of interfaces between
existing functions, view these functions in a local context, and do not allow for the
possibility that a more natural integration might occur if the product life cycle was
redefined.

We will introduce our data model by describing the abstraction concepts it supports.
We will first define our model informally using illustrative examples and then define it
formally in section C. It will be clear from our description that no other existing data
model provides natural abstraction support to the CIM environment.

62

-r- /"

B. DATA MODEL DESCRIPTION

Our model includes the molecular aggregation, generalization, version hierarchy,
instantiation, and instance hierarchy abstraction concepts. We believe these are necessary
to support the manufacturing process, and therefore are useful for other advanced
application areas as well. As we describe our modeling abstractions, we will discuss
existing concepts from which they were derived, where appropriate.

Some of the modeling abstractions supported in our data model are portrayed by a
conceptual schema which the user will manipulate (see Figure 23). The conceptual
schema will show the allowable type/subtype aggregations, component relationships, and
the acceptable combinations of primitives which can produce higher-level objects. Itis in

this conceptual schema that the primitives for an application environment are defined.

HOUSE

fioorplan

l L
exterior space
1 |

valrinﬂ I:ub-cmlfering 1

[fare] _L_ | [Cvincow | [[door]

Figure 23. Example Conceptual Schema

1 | 1 1
N e e

Primitives can be defined to any level of abstraction, and can be composite objects
themselves. These primitives are the building blocks which the data model manipulates
in support of a specific product design, process plan, or other application. A separate
schema is produced for each different application to be modeled and manipulated.

Each type and subtype in the conceptual schema will have a prototype associated
with it. The prototypes will contain slots for attribute values, allow default values to be
specified, and provide inheritance information. When instances are created, extensions of
these prototypes are created, allowing for attribute values to be defined which are unique
for that instance.

Figure 23 provides an example of a conceptual schema. This schema represents the
hierarchy of type aggregations for a generic house. An instance of this schema would
contain data for a specific house being designed.

A house could be the aggregation of a floor plan, an exterior, a roof, and interior
rooms and spaces. Each of exterior, roof, room, and space are further defined as
aggregations of objects, some of which are shared. For example, both roof and exterior
can have a component called opening.

The bold rectangle notation represents types which have named subtypes. For
example, room has subtypes named kitchen, den, bathroom, bedroom, etc., which can be
instantiated to produce a specific configuration.

Ir summary, the conceptual schema provides the medium through which the data
model captures the data for a particular application, e.g., product design. Together, the
data model and conceptual schema determine the full range of alternatives available in an

application.

1. Molecular Aggregation

We will use the aggregation abstraction concept described earlier to support
several aspects of the manufacturing environment. For example, in product design,
aggregation will be used to model assemblies which are composed of subassemblies and
component parts. In production planning, aggregation will be used to form process plans

from individual machine operations and other process plans. In production monitoring,
shop floor layouts will be determined by aggregating machine cells of various types.

In general, aggregation will be used to combine intensions and extensions of
objects of possibly different types into a higher level object, which will also be an
intension or extension, respectively, of a type. Figure 24 shows some sample

aggregations using our model.

][] [y
o] (o] [oeed o]

{a) aggregation of intensions

Jone's Floor
% model
626 es X23A-1
heat vent
Jone's frame Jone's subfioor
812, 7x6 44x8x1" 200- 8p
exerior grade, 37;‘:’ interior grade finighing
18° centers ptywood nalls

(b} aggregation of extensions

Figure 24. Sample Aggregations

2. Generalization

The generalization concept will be used in our model to provide the
relationship between types and their subtypes. Types will be defined as generalizations of

e

a set of named subtypes, and will be treated as primitives from which versions and
instances can be made directly. An example of generalization would be the creation of a
type wood-working machine from the subtypes drill press, jointer, table saw, and
lathe. The notion of subtype is important to our model because different subtypes (of the
same type) will be permitted to have different sets of attributes.

One important aspect of the use of generalization in our data model concerns
the inheritance of attributes between related types/subtypes. In Figure 25, wood-working
machine has been created with attributes owner and power source. Each of the subtypes
drill press, jointer, table saw, and lathe also have these same attributes, plus other
attributes which can be defined uniquely for each subtype. When the subtypes drill
press, jointer, table saw, and lathe are created, their subtype-unique attributes are
defined and then the attributes from their generalized type are inherited (in this case
owner and power source are inherited from type wood-working machine).

wood-working machine

attrbues

owner

power source

deifl press jointer table saw tathe
attributes atributes atmibutes atributes
owner owner owner owner
power source power source

power source oy Ly o mr wun:
model model . model mode!
chuck type max cut width biade type tuming type
bit type max cut depth blade size chisel type
bit size chise! size

Figure 25. Generalization

3. Version Hierarchy

A version of a type (or subtype) will be defined to be a molecular object with

two components, an interface and an implementation. The interface for a version is

specified by listing the properties or attributes which describe it. The implementation for
a version is specified by providing values for the interface attributes. In our model, a
version will have its interface details completely specified, but its implementation details
will be in some stage of completion. This definition allows a version to be plugged,
partially plugged, or unplugged [Ref. 92]. Figure 26 shows an object of type CAR with
an object version 1988 X-Car of type CAR. The object of type CAR has its interface
defined, which is denoted by the topmost block in the figure with the atributes year,
make, model, color, and owner listed. The implementation details for this object are not
specified, denoted by the unspecified values for those attributes. Object 1988 X-Car has
the same interface details as its object type, and also has some implementation details
specified, denoted by the value "1988" for the year attribute and the value "X-Car" for the
make attribute. In this example, the interface (function) of the object is specified, but the
implementation details (e.g., what color is the car?) are not completely specified.

your

rmake

model e CAR

colot

owner

yoar 1908

make XCar \m;zn.

1988

model of

ocolor type
CAR

owner

Figure 26. Version of a Type

Versions can have two distinct forms of attributes; those inherited from the
object type, and those with unique values for each version. Attributes inherited from the
object type reproduce the interface characteristics of the object type. Attributes defined to
be version specific are the attributes whose values distinguish one version of a particular

type from another version of the same type.

67

The difference between a version and an instance of a type/subtype is that a
version is created at an intermediate point in the modeling of an application, permitting
future work to begin at that point, with implementation details partially specified. A
type/subtype is considered a starting point in the modeling of an application, with no
implementation details specified.

In specifying the various possible values that attributes can take on, the version
hierarchy is formed. The purpose of this hierarchy is to expand the set of possible starting
points for future work. This notion of a hierarchy of intermediate modeling points is one
distinction between our model and those previously discussed. This concept is extremely
valuable because it minimizes the amount of redundant work in all aspects of the
manufacturing process. Traditionally, such redundancy occurs in product design, where
products are repeatedly designed using the same primitive elements; in process planning,
where machine operations are constantly refined, creating new process plan alternatives;
in shop floor layout, where improvements in efficiency are sought by shuffling resources;

and in scheduling, where priorities and resource availability are constantly changing.

Our ability to model versions in this hierarchical manner comes directly from
our definition of version. [Ref. 92] defines versions to be objects that have the same
interface, but different implementations. Our definition is more general in that the
implementation can be specified to any level of detail desired; plugged, or fully specified;
partially plugged, or partially specified; or unplugged, in which case no implementation
details are specified. The flexibility we gain in generalizing the definition allows us to
better model, and more efficiently support, the manufacturing environment.

Our version hierarchy is also different from that described in [Ref. 92], where a
hierarchy forms from the aggregation of versions to create higher level versions. Figure
27(a) shows an example of this concept. Our version hierarchy, on the other hand, forms
from the specialization of versions to form lower level versions. Figure 27(b) depicts our

version hierarchy concept.

Our hierarchy consists of versions which are all of the same type. The versions
are related to each other in the manner represented by the hierarchy. All of the versions

are related to their type by version generalization; the topmost version in the hierarchy is
directly related and the others are indirectly related. Again, the flexibility provided by our
model in representing and relating versions in this way increases the semantic modeling
power of the model and brings it closer to the application environment. We know of no
other model which supports this construct.

version V
]0 -
K SR pe A
4
.'"' i, \x
s H 5
rd H
version$ wversion C
of =~ 0O of
type B HE type C

versionD v ;] k version €
of of
type D tyos E

(=) aggregation of versions

CJO) &,

e

e L |BEBOICD| 4.

(b) speciaiization of versions

Figure 27. Comparison of Version Hierarchies

4. Instantiation

We use the instantiation abstraction concept in our mode! for several purposes.
The dotted and dashed lines in Figure 28 represent instantiations which create versions
and instances of objects, respectively. Both types and versions can be instantiated, and

the result can be either a new version or an instance of an object.

WW

Instantiation includes an inheritance mechanism which is more direct than the
inheritance associated with the generalization abstraction concept. The instantiation
inheritance copies all of the attributes and attribute values of the instantiated object. No
new attributes can be defined for the instances created, but attribute values may be further
specified. Thus, in Figure 28, the attributes of version V1, instance I1, etc., are the same

| as the attributes for type A itself. The only difference between any of these instantiated

objects, either versions or instances, are differences in attribute values. Two instances of

the same type or version, such as Il and 12, will always be distinguished by the values of
attributes, in particular, attribute values which are not inherited during the instantiation
process. Therefore, the major distinction between an instance and a version is the same as
the distinction between extensions and intensions. In the manufacturing environment,
instances are meant to represent real-world products, process plans, schedules, etc., while

versions serve as templates which define those real-world objects to some level of detail.

typs A
S ™.
----- ~
version V instance |
A e \ Y ~\\\\
version V1 instance 11 instance 12

Figure 28. Types of Instantions

5. Instance Hierarchy

We created the instance hierarchy to supplement the other abstraction concepts
in our data model, providing a mechanism which allows a user to maintain all of the
different instance alternatives for a particular function. For example, a design engineer
could keep all of the variations for a product being designed. Similarly, alternative

process plans could be kept this way until a final plan was decided on.

};
|
|

Figure 29 depicts the sequence of events that might occur as a design engineer

interacts with our data model.
-
- type/subtype hierarchy
examined for most
[S1 I S2 appropriate object.
- type/subtype is expanded
to show available versions
r Vi ' V2 - appropriate version is selected

- instance of the version
is created

|

1 - as work proceeds, more
alternatives are added to
instance hierarchy

1 12 - when work is completed,
I I final choice is selected

- instance hierarchy is
collapsed, decision is
made whether to add
final choice to version
V3 hierarchy

Figure 29. Operation of Data Model

Note that the instance hierarchy, like the instance itself, is a temporary entity
within the system. When a designer decides which alternative in the hierarchy will
become the final choice for a given product, the hierarchy collapses, leaving only the
selected alternative. The design is archived with the version from which it was created.

The designer then has the option of creating a new version from the new design, which

7

m—,@f -

will be added to the version hierarchy (in the appropriate place) to become a starting point
for future work. If the new design is added to the version hierarchy, another decision has

to be made regarding which attribute values will be included when the version is created.

C. FORMAL DEFINITION OF THE DATA MODEL

We will use standard mathematical notation to define our data model. We will start
by defining the notions of type and object. We will then define each of the abstraction
concepts used in our model in terms of these notions.

We define a type to be the characterization of a set of values and the set of
operations that are applicable to those values. We further define a type to include
system-defined and user-defined types. System-defined types are the primitive types
integer, real, character, string, etc., found in most database systems. User-defined types
are formed by aggregation of previously defined types, each of which may be either
system-defined or user-defined. We will denote a type in this discussion by the use of
capitalized letters.

The aggregation operation, used to create a type P from types Ti, T2, ..., Tq is
defined as follows:

n
P=Age(T1, T2,...,Tn)=P= .X] Ti
i=

where X denotes the Cartesian product operation, T1 X T2 X ... X Tn. Therefore, a
user-defined type is the Cartesian product of the sets of values which are the aggregates
for that type. The aggregates for a type P, denoted by Agg(P), are defined as follows:

n
Agg(P)=(T; IP= X Ti)

We define an object to be a member of a type, or in other words, a value in the

domain of a type. We will denote objects by use of bold-faced lower case letters. Using

72

e

our notation, an object 0 € T <> o is of type T. The aggregates for an object o are defined

as follows:

n
Agglo)={aij 1l oe TAaje Ti AT='x1Ti 1,
i=
that is, the aggregates of an object of type T are the objects of type Ti, where T; is an

aggregate of type T.
The generalization of subtypes Si, S2, ..., Sn, denoted by Gen(S1, S2, ..., Sn), to
specify type T is defined as:

Gen(S1,52, .., Sn) =T &
(Ae Agg(T) = (A e Agg(S1) AA e Agg(S2) A ... A A € Agg(Sn))).
The specialization relationship between a type T and its subtypes is defined as:
Spec(T) = (S} & (Ae Agg(T) = A e Agg(S))
and a subtype S of type T is defined as
S StT = S e Spec(T).
An instance of a type is defined as follows:
xInY = (Ae Agg(Y) =2 (Tae Agg(x) 3(a € Ava = ¢))).
In our notation, x In Y reads "x is an instance of Y" and ¢ denotes a null, or unspecified

value..
A version v of type T, denoted by v Ver T, is defined as:
vVerT=
(Ae Agg(T) = (Qae Agg(v) 3@ € Ava = ¢))
A(3ye Agg(V)ay= ¢).
An instance of a version is defined as follows:
xIny = (ae Agg(y) = ae Agg(x)).
Our version hierarchy requires two definitions. The first relates a version to the type

from which it was created. The second relates a version in the hierarchy to the version

from which it was created.

73

o

(2)viVhv2 = ((y e Agg(v2) = y € Agg(vi)) A (Agg(vl) # Agg(v2))).
Our definition of instance hierarchy is as follows:

i1Thi2 =(y e Agg(i2) = y € Agg(i1)) A (Agg1) = Agg(iz)).

D. ROLE OF THE DATA MODEL

The purpose of a data model is to define the rules according to which data are
structured [Ref. 79]. The major way of structuring data is through the use of abstraction.
Using abstraction, the general properties of objects are emphasized while their details are
suppressed. The use of data modeling techniques in advanced application areas such as
Computer Integrated Manufacturing serves an additional purpose. The data model, if
properly developed, takes on an important role in the attempt to automate and integrate
otherwise autonomous functions. The data model itself serves as a standard which

facilitates integration.

In the design process, the data model could provide a standard which different
product designs can use to ensure compatibility in the later stages of production. In
particular, this standard will facilitate the integration of design data into the process
planning and scheduling functions. The role of the data model in process planning will be
to provide a standard which different product process plans can use to ensure
compatibility with and facilitate integration into the scheduling function. If the same data
model is used to support design, process planning, and scheduling, then the compatibility
between design and process planning functions could be extended to the scheduling
function, providing a natural form of integration of the major components of the

manufacturing process.

E. SUMMARY

In this chapter we presented the data-oriented manufacturing model. The model was

described as the composition of several data abstraction concepts presented in Chapter IV.

74

r——————-—-—-———" <

We provided a formal description of the data-oriented manufacturing model and
described the role that the data model plays in enforcing standards in a system.

75

VI. HIGH-LEVEL INTERFACE APPROACH TO INTEGRATING
MANUFACTURING FUNCTIONS

A. MOTIVATION

The goal of integrating manufacturing functions is not easy to achieve. A major
problem to be overcome is the decision on which strategy is to be used. The investment
in existing resources cannot be overlooked in planning an implementation strategy. As
we stated previously, one way to consider the existing resources in moving toward the
implementation of Computer Integrated Manufacturing is to use the high-level interface
approach described in Chapter III. Since this approach still only solves the problem
locally, and does not view manufacturing functions in the context of the entire system, it
is considered a short-term solution. Since the cost of implementing a fully integrated
system will be too much for many manufacturers to bear, this high-level integration may
be their best approach.

We will demonstrate this integration concept by describing a high-level interface
between Computer Aided Design and Computer Aided Manufacturing, using the partition
of functions from Figure 3. Using our data-oriented approach to integration, we will

focus on the data requirements for integrating CAD and CAM.

B. DATA REQUIREMENTS FOR INTEGRATING CAD AND CAM

Figure 30 depicts the data interactions in CAD and CAM. CAD uses the conceptual
schema (as discussed in Chapter V) and the data model to produce the appropriate design
data for the product to be manufactured. The design data is used in the industrial
engineering function to produce bill-of-material and manufacturing operations
information, which is used in CAM to determine how and when the product will be
produced. Since our main objective is to provide an interface between CAD and CAM,
we will propose to use the design data produced by CAD to automatically produce the

76

-—-—T————-———-——" —r< — T T v

bill-of-material and machine operation information required in CAM to develop a
production schedule.

(conceptual sehema—j
4 |

i CAD data model
} |

Industrial
3 Engineering

/ \
& ﬁl-o(-materials] Lmanufacturing operations]
F \ /
1 CAM
l

(scheduling data]

P
e A o

s

Figure 30. CAD/CAM Data Interaction

J 1. Representing Design Data
The CAD process, guided by the data model, records actual instantiations of

; the primitive types represented in the conceptual schema to form the design scherma for
the product being designed. The design schema for a product uses the inheritance
mechanisms from the data model to infer some attribute value information about the
properties of primitive types/subtypes from known information about related

types/subtypes. Our design schema uses both part-of and contains, which are
f aggregation relationships, to pass information up and down the hierarchical structure.

a. Use of Prototypes and Inheritance

Each type/subtype in the conceptual schema has a corresponding
intensional prototype associated with it. A prototype is a block of memory allocated to
store data using the aggregation abstraction concept. As the conceptual schema is
manipulated to create the design schema, intensional prototypes are instantiated to capture
the design data associated with the use of an object of a given type/subtype in the design.
Figure 31 is an example of a prototype (intensional) for type cover. Each instantiated
prototype has named slots which can be filled with either relationship or property data.
The slots part of and contains are used in the prototypes to represent relationship data.
In Figure 31, part of relates the cover to a particular face (using the conceptual schema
shown in Figure 23). Contains is used to identify prototypes at the next lower level in
the conceptual schema, and stores data in the form of a list, so that a variable number of
relationships can be represented. The slot material type is used to hold property data, in
particular, the kind of material that the cover is made of. Note, as shown in Figure 31,
that some slots are marked with an *, signifying that inheritance can be used to provide a
value, while other slots may be marked with **, denoting an attribute whose value is
optional. The slots which are optional are those that could have a nonsensical value under
some circumstances. For example, the depth of a cover of paint would not normally be

specified, while the depth of a cover of panelling would be.

material type |
** finish color

demensions:
* height

** depth

Figure 31. Sample Prototype

78

Careful thought must be given to the use of optional slots when designing
prototypes. The design and efficiency of the CAD/CAM intezface may be affected by the
improper use of optional slots since the interface has to determine for each use of the
prototype whether or not the optional slots should be filled. The greater the number of
optional slots, the greater the complexity of the interface becomes. Another aspect of
prototype design which must be considered concerns the format of the slots. The format
should be kept as simple as possible to minimize the effect on the interface design. Value
information for each slot should either consist of two parts, a measurement value and the
units of measurement, or a single part, the property value. The description of the slot,
e.g., height in Figure 31, may be specified in any way, but should have standardized
usage throughout the prototypes for a particular application.

b. Coordinate Systems

In order to specify location data in a prototype, it is imperative that the
frame of reference be known by any process using that data. For most circumstances,
three frames of reference should suffice, global or world, product, and local coordinate

systems. Figure 32 depicts the relationships among these coordinate systems.

Locsl
Product
4 Coordinates Coordinstes
- Y
- Z b a;s Z | saxis
Y axis| / axis /7
axis a
World z
Coordinates - ais
The
Product Ld
X
axis
(0,0,0) X
axis

Figure 32. Coordinate Systems

79

Global coordinates relate an object location in the real world (on planet
Earth). The X and Y axes could represent the latitude and longitude, respectively, and the
Z axis could be perpendicular to the ground, to represent the elevation of an object with
respect to sea level. The product coordinate system expresses information relative to the
object itself, and is useful when locating components of the object, regardless of the
location of the object in global coordinates. The local coordinate system extends the
product coordinate system so that subassemblies of an object in product coordinates can
have their own coordinate system to relate components of the subassembly to the
subassembly itself.

The uses of product and local coordinate systems not only eliminates the
need for global coordinate information under most circumstances, but also provides
automatic update of location information during design changes. For example, if a wall,
containing a window, is moved, and the window location is specified in a local coordinate
system relative to the wall, then the window coordinates need not be modified to reflect
the change in position of the window with respect to the overall product, or the real

world.

One other valuable piece of information is used to specify the orientation
of an object. The normal is defined to be a unit vector perpendicular to the surface of an
object. If many flat parts are being used in a product, then the normal can be used to
gather additional information about how the parts are related in the overall product. For
exampie, a wall can be distinguished from a ceiling or floor, which can also be

distinguished from each other, using normals. Figure 33 shows an example of a normal.

Figure 33. Example of a Normal

By definition, each flat surface will have a unique normal with three
components, one for each of the three dimensions in the coordinate system. A component
value of 1 indicates that the normal is parallel to the axis in question, with an orientation
in the positive direction of the axis. A value of -1 indicates that the orientation is in the
negative direction of the axis, still parallel to the axis. The value of each component is
equal to the cosine of the angle between the normal and its axis [Ref. 105], and therefore,
will always be between -1 and 1.

c. Storage and Manipulation of Design Data

The use of prototypes to capture design data has a major advantage in
addition to those already mentioned which affect the CAD/CAM translation process. The
representation of design data in prototypes, as a tabular array of data, permits storage and
manipulation (insertion, modification, deletion, etc.) of the attribute values using a
non-first normal form relational model [Ref. 106] at the physical level. The non-normal
form relational mode] is required because the values of the contains attributes are
contained in a list, which is not atomic, and therefore violates the requirements of the

normal relational model.

Using the non-normal form relational model, a database scheme is
developed containing one relation for each type/subtype in the conceptual schema. As
prototypes are instantiated during the design process, the slot value information provided
by the user is stored in the appropriate relation as a tuple. Since each instantiated
prototype contains a unique name, specified by the name slot, that name can serve as the

identifying key (primary key) for its associated relation.

2. Data Used in CAM

The industrial engineering activity, shown in Figure 30, converts the design
drawings and other design information into working papers for manufacture. These
working papers define what has to be produced and how it should be manufactured.

When the industrial engineering activity is completed, the sequence of manufacturing

81

m -

operations necessary to produce the product and the raw material requirements for those
operations, in the form of a bill of materials, will be known.

a. Manufacturing Operations

: To plan the sequence of manufacturing operations necessary for
t production of a product, the product is decomposed into a series of operations which are
related to each other both temporally and spatially. These temporal and spatial
relationships determine the sequence of the operations. In the decomposition process, the

most suitable machining technologies are considered at each step. Decisions are made
regarding the forming, shaping, cutting, etc., of raw materials, and the appropriate
machinery, tools, and fixtures are selected which perform the desired operation. The
information on the sequence of manufacturing operations will drive the CAM functions,
in particular, the scheduling of resources to perform those operations for a product within
a desirable time frame.

b. Bill of materials

The raw material requirements planning aspect of industrial engineering
determines the quantity of materials required for a product, using information about the
external and internal composition of that product. The cost of each component can be
used to calculate the materials cost for the product. The bill of materials produced will
show these costs and the relationships of components within subassemblies and

subassemblies within the overall product.

C. EXPERT SYSTEM TRANSLATOR

Our approach to a high-level interface of CAD and CAM is to develop an expert
system translator. The basic task of this translator is to automatically conclude the
quantities, types, and assembly sequences of raw materials needed to manufacture a
product from design data. In addition, the translator will provide for resolution in the
event that it receives conflicting data. An example would be the preference of standards
data over design data, in situations where standards would otherwise not be met. The

82

'—Tm——-—'F

translator will be opportunistic, that is, it will use substitution criteria whenever possible

to lower cost without sacrificing quality. The translator will use the schema and assembly
data as input to the backward-chaining control mechanism. In addition, the translator
performs various standards checks on the CAD data to ensure its correctness. Correctness
is used here to imply that the data meets all known requirements. These requirements
may be based on laws of physics, laws of government, or anything else deemed

appropriate.

Data Mode!

! k
Schema Design
Data Data

Meta
Rules

]

l

Expert System Translator

r____,__,____——a Standards Data

—

|

Assembly Data

Process Planning and

Material Requirements Planning

Data

|

other CAM

|

Scheduling Data

Figure 34. CAD/CAM Translation

Figure 34 depicts the data involved in the CAD/CAM translation process. Since our
main objective is to automate the industrial engineering process which produces process
planning and material requirements planning data, we will not concern ourselves with
data requirements beyond the scheduling process. The design phase is represented by the
box labelled CAD which takes the conceptual schema as input and outputs schema and
design data using the data model as a guiding mechanism. The expert system
translator uses the schema and design data as input and produces process planning data
which is used in the manufacturing phase, eventually being converted to scheduling data.
We will briefly describe expert systems and then discuss each of the data pools shown in
Figure 34 individually and tie them together by describing the interactions which occur.

1. Expert Systems

The term expert system has been used in our discussion of the CAD 10 CAM
translator. True expert systems are written using artificial intelligence languages such as
Prolog and belong to the class of artificial intelligence applications known as
knowledge-based systems [Ref. 107]. Figure 35 shows the structure of an expert system.

DESIGN DATA
KNOWLEDGE RULES
INFERENCE ENGINE
ACTION

Figure 35. Expert System Architecture

—

Using Prolog programs, each rule represents a portion of an expert’s
knowledge of the problem domain. This knowledge is reduced symbolically to facts
about the surrounding environment. Data supplied to the expert system is then treated as
facts and used to infer new facts. One interesting feature of some of these rules is their

apparent link to rules of thumb, known as heuristics [Ref. 107].

Among the necessary qualities of an expert system is the requirement that it
properly perform its assigned tasks. A potential problem is that experts may not agree on
what is proper. For example, consider two builders each constructing a house of similar
design. While most of the assembly priorities would be similar, the experts could
disagree on matters such as the density of fasteners required for a particular kind of
material. One advantage gained by using artificial intelligence techniques is the
flexibility to allow experts to set their own priorities by modifying the expert system rule
base without any changes to the other parts of the system concerned.

Expert systems are also advantageous in that they have the ability to explain
their path of reasoning, although in today’s systems the explanation is usually nothing
more than a trace of the rules proven to be applicable.

One consideration in the development of an expert system is that the code be
partitioned according to the functional areas of concern. This is important because many
experts are limited in the breadth of their knowledge. Therefore, the code should be
divided in such a way that each expert has responsibility for that portion of the system

pertaining 10 .iis area of expertise.

2. Translator Implementation

A simple one room house is used to demonstrate our expert system translator.

Figure 36 shows a design schema for this example.

it
i

face 11 face 12
Foe 2
cover 1 cover 12
sub cover 1 [subcaver 13,

sub cover 2| | sub cover 14|

| exterior 1 |

1] | 1 |]
| tace 1 [fae2 | | taces | face 4 | tace o [face 10
[eovorzl Lcovera [cover?] | coversll Icwerloll |cwer11|
[subcover 3] [subcover 4] [sub cover | !subeovor 6] [sub cover 11 framea-]
|subeover 12|
- , | |
face § face 6 | face 7 | | face 8
| cover 6 I cover 7 | cover 8 I
[frame 3 | [frame 4 | :framesl frame 6

| sub cover 7 sub cover 8 sub cover 9 lsub cover 10]

Figure 36. Design Schema

a. Schema Data

The schema data consists of semantic network-type relationship
information from the conceptual schema for a particular product. This schema data will
be used by the expert system translator to associate design data according to the
conceptual schema relationships. The relationships supported by our system are the
KIND-OF (instance) and PART-OF (aggregation) [Ref. 108]. The PART-OF relationship
provides an attribute inheritance mechanism whereby the system can infer attribute values
in cases where those values were incompletely specified by the designer. Inheritance
begins at the closest ancestor and continues up the ancestral hierarchy until a value is
found. The relationships in the conceptual schema are stated in the form of facts, as
shown in Figure 37. Our system distinguishes between schema data and the conceptual
schema because the separation of these allows a user to modify the original conceptual
schema in the design process by modifying the schema data without having to change the
schema itself. This adds flexibility to the system and permits the conceptual schema to be
implemented independently (i.e., it can be represented in a form most appropriate for
processing by CAD) of the schema data which will be used by the expert system
translator. If no modification is made to the conceptual schema during the design process,

the schema data does not have to be re-generated for each product.

part_of (house, floorpian). part_of (house, interior).

part_of (house, sheli). part_of (house, roof).
part_of (interior, story). part_of (story, room).
part_of (story, space). part_of (room, tace).
part_of (space, face). parnt_of (face, sub-cover).

Figure 37. Conceptual Schema Data

87

b. Design Data

The design data consists of the instances of the prototypes created during
the design process. All slots are filled in, with default, inherited, or specified attribute
values. As prototypes are instantiated, KIND-OF facts are asserted which associate the
instance with the type from which it was created. Figure 38 shows an instance of a
prototype of type face and the design data which corresponds to it. The kind_of (facel,
face) fact tells the translator that this instance, named, facel, is of type face. Note the
close correspondence between the design data, written in Prolog, and the instance of the
prototype. The properites or attributes from the prototype become predicate names and

N

the values of the attributes become arguments to those predicates.

PROTOTYPE === dimensions:

DESIGN DATA «—s

name:
I properties:
* finish color
| 115 inches |
I won 362 inches |
depth 1 inch
containe fsub_cover3, cover2)
J rormalX) |
J romaly Y |
N romal 2 () 1
I pato room1 1
P face1 ¥

kind_of (lace1, face).

dimension (tace1, height, 118, inches).
dimension (facet, width, 382, inches).
dimension (iace1, depth, 1, inches).
containg (lace1, jeub_covers, cover2]).
normal_X (tacet, 0}

normel_Y (facet,).

normal_2 (fece1, 0).

part_of (face1, reom).

Figure 38. Prototype/Design Data Relationship

In the case of

S g

-

- _ -
— s

- e . e

dimensions, the names height, width, and depth are treated as attribute values, as shown
in the design data.

The prototype shown in Figure 38 can be considered to be complete, even
though no value for finish color is shown. The value of finish color will be determined
during the translation process using inheritance. Since facel contains cover2, the
inheritance mechanism will look at the design data for cover2 and copy the value of the
finish color given in that portion of the design data. When all of the instantiated
prototypes are completed, the design process itself is considered to be complete, and the
design data is ready to be used by the expert system translator.

¢. Standards Data

Design and manufacturing systems have to take into account a wide
variety of Federal, State, local, Occupational Safety and Health (OSHA), quality
assurance, and other standards prior to manufacturing a product. For example, a design
could call for a 1/4" inside diameter pipe in a specific location, but a local building code
may specify a 3/8" minimum inside diameter. In this case, the design specification must
be changed to reflect the regulatory requirement. For a given product, thousands of
interactions are possible between existing standards and specifications generated from the
design process.

These standards are represented in the system by Prolog-style rules to
facilitate their enforcement by the expert system translator. Figure 39 gives an example
of the implementation of a regulatory requirement.

The maximum and minimum facts shown on the first two lines provide
the limits for a particular type of pipe. The passed predicate indicates that the minimum
and maximum values with their respective units will be checked against the design values,
indicated by the variable Z and units variable Units. The convert predicate converts the
standards units of measure to the units in which the design object is measured. The
check_standards predicate would compare all three measurements to a common unit of
measurement and verify that the standard was met.

maximum (pipe, plastic12, diameter, 3, Inches).
minimum (pipe, plastic12, diameter, 1, inches).
passed (pipe, Type, Dimension, Z, Units) :-
minimum (pipe, Type, Dimension, X, Unitx),
maximum (pipe, Type, Dimension, Y, Unity),
convert (X, Unitx, Min, Units),
convert (Y, Unity, Max, Units),
check_standards (pipe, Type, Dimension, Z, Units, Min, Max).

Figure 39. Regulatory Requirement

d. Assembly Data

Assembly data includes sequencing information for assembly of
composite objects, or subassemblies, according to the relationships shown in the
conceptual schema. This assembly data covers all conceptual schemata for a given
application domain. In addition, information on standard material types and acceptable
substitutes is included, with their costs. A system could take advantage of fluctuating
costs with the substitution information to produce an optimal cost product.

The sequencing information will be represented in Prolog-style rules.
Figure 40 provides an example of a portion of a conceptual schema with the sequencing
rule to be included in the assembly data for the given product. The first operation fact to
be asserted provides for inserting the glass into the case. The second operation inserts the
case into the appropriate sill. Note that operation information includes details of specific
sills, cases, and glass. The assembly rule will produce a set of operation facts for each
window defined in the design. Each window will be separately identifiable.

In the object-oriented approach, the assembly rules would be considered
part of the operations encapsulated with each data type. We choose to separate these rules
for the following reasons. First, the separation allows us to abstract out the

window

sill case

glass

assemble (W, window) :- property (W, window, Wtype),
part_of (W, S), part_of (W, C), part_of (C, G),
property (S, sill, Stype), property (C, case, Ctype),
property (G, glass, Gtype),
assertz (operation (Ctype, assembie, glass, Gtype)),
assertz (operation (Stype, assemble, case, Ctype)), fall.

Figure 40. Component Relationships and Assembly Rule

implementation details so that the conceptual schema isn’t tied to the rule-based
implementation imposed by the assembly data. The separation also functionally aligns
the conceptual schema and assembly data with the people responsible for maintaining
them.

The conceptual schema can be developed by users with little technical
expertise or familiarity with the implementation considerations necessary to manufacture
a product. The assembly data can be maintained by the manufacturing experts who are
familiar with implementation details, material properties that may lead to more cost
effective substitutions of components, and the sequences of operations used in the
manufacturing process. Another reason we separate them is that they serve different
functions. The conceptual schema is used by designers, while the assembly rules are part
of the expert system translator. The conceptual schema represents one product while the
assembly data represents all the conceptual schemata in the application domain. The

91

T — e

assembly data could also contain information about the way the factory chooses to do
assembly, which is independent of any particular product.

e. Translator Meta-Rules

‘ The translator meta-rules, combined with the standards data, assembly
data, and schema data, will determine how the design data for a particular product will be
transformed into process planning data. These rules will enforce the standards given in
the standards data, and provide the actual translation mechanism which produces the
process planning data. Figure 41 provides a sample of meta rules for the house design
and construction example. These meta rules will assert new facts which represent
requirements for specific raw materials. Note that the materials list is refined for items
such as paint, nails, caulking, etc., whose requirements are expressible as a function of the

dimension of the object.

raw_materials_needed :-

kind_of (Extens, Intens),

property (Extens, finish_type, Material),

property (Extens, finish_color, Fcolor),

liquid (Material, Ltype, Covers, Cunits, Lunits, Cost),

dimenslon (Extens, height, Ht, Htunits),

dimension (Extens, width, Wd, Wdunits),

convert (Ht, Htunits, Height, Cunits),

convert (Wd, Wdunits, Width, Cunits),

Area = Height x Width x 2,

Amt_needed = Area / Covers,

Tot_cost = Amt_needed * Cost,

assertz{liquid_list (Material, Ltype, Fcolor, Amt_needed,
Lunits, Tot_cost), fail.

Figure 41. Sample Meta-Rule

5 Ly Ry

f. Process Planning Data

The main outputs of the translator will be a bill of materials and
sequencing information about the manufacturing operations required to produce a given
design object. The bill of materials will contain information on the assembly of
components into subassemblies and quantities of raw materials required for manufacture
of component parts. Both of the outputs of the translator fall into the category of process
planning and material requirements planning information. The two outputs combined
provide all the necessary information for the manufacturing of a product.

g. Scheduling Data

After the requirements for a new product have been determined, the new
requirements data can be combined with existing production requirements in the
scheduling phase. At this point, priority information is used to determine how to integrate
the new requirements into the existing workload. The scheduling data includes assembly
data which will be used to coordinate construction of subassemblies with production of

components and ordering of raw materials and purchased parts.

h. Operation of the Translator

The following description is based on the execution of the translator using
an example included in the translator program listing in Appendix A. Appendix B
contains the output produced by the translator for this example. The expert system
translator performs a variety of tasks in providing the interface between CAD and CAM.
The first task is to use the inheritance mechanism discussed previously to fill in any
attribute values not explicitly specified during the design process. At the same time, the
design data is validated against applicable standards. If the translator encounters
incomplete design data, the attribute name for the missing data is highlighted along with
other identifying data so that the appropriate data can be added to the system. The
translator will check all of the design data and will only continue on to the next task when
no exceptions are detected.

93

The next task to be performed by the translator is to determine the
sequence of manufacturing operations necessary to produce a given product. It is possible
during this portion of the translation process for problems to arise which prevent a
product from being properly manufactured. The major problems encountered are caused
by a different type of incomplete design data. That is, not incomplete prototype
information, but cases where additional prototype instantiations should have been
included in the design process but were inadvertantly omitted. An example would be a
case where a house is designed with all of the required components except for the floor.
The translator would detect this type of omission and require a correction before the final
step in the translation process is performed.

The last step to be performed by the translator is the determination of the
raw material requirements for a product. The translator produces a complete listing of
materials, their quantities, and costs. The translator extends this output by ccnsidering
possible material substitutions and generates a new raw materials list for each substitution
it considers.

We will now discuss the operation of the translator in more detail,
continuing with the previous one-room example.

(1) Standards Checks

The first series of operations performed on the input data by the
translator are those necessary to verify that all applicable standards requirements are met.

Figure 42 contains some of the standards that were used for our one room house.

Note that while the width and height standards for doors apply only
to a door of type doorl, the depth standard for doors and the window pane quality
standard apply to all doors and windows respectively. This demonstrates the flexibility of
the language and our system.

In addition to actual physical checks, two other types of standards
data are also contained in the standards file. These are shown in Figure 43.

L e e e aa L < ——— A d ——

minimum (door, door 1, width, 32, inches).
minimum (door, door 1, height, 6, feet).
maximum (door, door 1, width, 4, feet).
maximum (door, door 1, height, 7, feet).
minimum (door, _, depth, 2, inches).
maximum (door, _, depth, 3, Inches).

minimum (pane, _, quality, 3).

Figure 42. Standards Checks

comment (masonry, ‘approved methods must be used for building
masonry walls when outside alr temperature drops below 40
degrees fahrenheit’).

comment_for (cover, brick, masonry).

comment_for (cover, concrete_block, masonry).

comment_for (sub_cover, brick, masonry).

comment_for (sub_cover, concrete_block, masonry).

comment (framing, ‘grade marks must be clearly visible on all
framimg members for inspection’).
comment_for (frame, wood, framing).

check_tor (sub_cover, tar_paper, [tar_paper1, tar_paper2,
tar_paper3]).

Figure 43. Standards Data

The first type of standards data is the comment_for data. For
example, consider the rule comment_for(frame,wood,framing). This rule relates any
frame made from a wood product to the comment framing. This allows data that can only
be verified during manufacturing to be output by the translator for use in process

planning.

95

L 2w -

The other data type contained in the standards file is the check_for.

In Figure 43, the rule
check_for(sub_cover,tar_paper,[tar_paperl,tar_paper2,tar_paper3])

is used to verify that all sub-covers made out of tar-paper use tar-paper]l, tar-paper2 or
tar-paper3. In addition, those iypes of tar-paper not used are listed as possible material
substitutions. These lists of possible substitutions will become important again when
determining raw material requirements later in the processing. Figure 44 illustrates the
use of this type of standards check.

check for sub_cover sub_cover14
sub_cover subcover14 meets requirements; allowed substitutes are:
- tar_paperi
- tar_paper3

Figure 44. Substitution of Materials

Note that the design data currently has sub-coverl4 made from
tar-paper2. The other two types are listed as possible substitutes. For more realistic
situations, substitutions of one material may affect other parts of the product. For
example, consider a case where several types of plastic have been listed as acceptable for
the product piece in question. If glue is being used on the plastic during the
manufacturing process, different plastics may require different adhesives. Therefore,
caution must be used in making substitutions. Sample output from the standards checking
portion of the translator is shown in Figure 45.

check for frame frame3

grade marks must be clearly visible on all framing
members for Inspection

check for sub_cover sub_cover7
check for cover caveré
approved methods must be used for building masonry walls

when outslide alr temperature drops below 40 degrees
fahrenhelt

Figure 45. Sample Translator Output (Simulated)

(2) Product Assembly

Once the standards checks have been completed, the translator must
determine the product assembly sequence. To build our one room house, we would
expect the foundation to be erected first. Figure 46 is a listing of Prolog rules used to
generate the assembly steps for the frame foundation and walls.

The first frame selected for assembly is the foundation. This frame
is located by finding a face which is part of the house being built and which also faces
away from the ground. The trans_partof(Yface,H) will locate any face that is part of the
house represented by the variable H. Then normal_Z(Yface,1) checks if the Z
component of the normal to the face of interest is equal to one. If so, then this face is a
floor. Figure 47 shows example orientations of normals for our one room house.

Any normal parallel to a coordinate axis will have that axis’
component equal to one in value if it points in the positive direction along the axis and
equal to minus one if it points in the negative direction. For the example house, only the

normals to the faces contained in the roof do not meet these requirements. It is not

97

-'-'V T

———r—

—a

I do foundation frame */
assemble (H, house) :-
kind_of (Yface, face),
trans_partof (Yface, H),
normal_Z (Yface, 1),
contains (Yface, L),
member (Frame, L),
kind_of (Frame, L),
property (Frame, material_type, Mtype),

assertz (operation (Frame, assemble, ‘'material type:’, Mtype)).

I* do frame perpendicular to ground */
assemble (H, house) :-

kind_of (Yface, face),

trans_partof (Yface, H),

normal_Y (Yface, 0),

normal_Z (Yface, 0),

contains (Yface, L),

member (frame, L),

kind_of (Frame, frame),

property (Frame, materlal_type, Mtype),

assertz (operation (Frame, assemble, ‘'material type:’, Mtype)).

assemble (H, house) :-
kind_of (Yface, face),
trans_partof (Yface, H),
normal_X (Yface, 0),
normal_2Z (Yface, 0),
contains (Yfacs, L),
member (Frame, L),
kind_of (Frame, frame),
property (Frame, material_type, Mtype),

assertz (operation (Frame, assemble, ‘'material type:’, Mtype)).

Figure 46. Frame Assembly Rules

zaxie celiing
normal_z = -1 il
normal_X = -1
.................... P O—
normel x=1 4
y axis
normal 2= 1
floor

Figure 47. Orientation of Normals

necessary that any face meet this requirement; it has been done only to simplify the

example.

Once the floor frame is in place, the second and third rules in Figure
46 locate the wall frames and add them to the assembly list. The second rule looks for
faces with normals parallel to the X axis by specifying that the Y and Z components of
the normal are equal to zero. Similarly, the third rule locates those faces parallel to the Y
axis. In Prolog, backtracking will force these rules to be tried until no more valid
solutions are found. In this way, we locate all faces meeting the specifications of each
rule. Therefore, we only need be sure that each rule does indeed fully state all

specifications of concern.

In Figure 48, the rules which generate assembly data for the ceiling
and roof are shown. The only notable difference from our previous rules in Figure 46 is
that faces associated with the roof are located by using the contains relation associated
with the roof. This is a better method than using normals since the normal vector for a
roof face can vary depending on the design of the house. The only framing left to be
performed is for the windows and doors. Figure 49 lists the rules which handle these two

cascs.

I* celling frame */

assembie (H, house) :-
kind_of (Yface, face),
trans_partof (Yface, H),
normal_Z (Yface, -1),
contains (Yface, L),
member (Frame, L),
kind_of (Frame, frame),

property (Frame, material_type, Mtype),
assertz (operation (Frame, assembie, ‘'material type:’, Mtype)).

I* roof frame */

assemble (H, house) :-
kind_of (Roof, roof),
trans_partof (Roof, H),
kind_of (Yiace, face),
trans_partof (Yface, Roof),
contains (Yface, L),
member (Frame, L),
kind_of (Frame, frame),

property (Frame, material_type, Mtype),
assertz (operation (Frame, assemble, 'material type:’, Mtype)).

Figure 48. Assembly Rules

100

assemble (H, house) :-
kind_of (Door, door),
trans_partof (Door, H),
property (Door, material_type, Mtype),
assertz (operation (Door, assemble, ‘material type:’, Mtype)),
get_faces (Door, Face1, Face2),
asseriz (operation (* °, "-attach to', Face1, Face2)).

assemble (H, house) :-
kind_of (W, window),
trans_partof (W,H),
contains (W,L),
member (Siil, L),
kind_of (Sii), slll),
assertz (operation (Siil, assemble, ‘window slil for:’, W)),
got_taces (W, Face1, Face?),
assertz (operation (' ', -attach to:’, Face1, Face?2)).

Figure 49. Rules for Framing

Again, both rules only check particular parts of the house. For the

door, we determine its material and the two faces to which it is attached. The same is
done for the window except that the sill is treated as its frame. Again, backtracking is

used to get all occurrences of windows and doors.

With all the framing in place, the faces must now be constructed.
Figure 50 gives the code to handle this. Note that the exterior and roof are constructed
first, and then the interior room itself. For each area, the contains relation is used to get a
list of all components, including faces, and the information is passed to an
assemble(L,face) routine to erect only the faces. This is actually a series of routines that
use both backtracking and recursion to determine the assembly data. Figure 51 gives the
routines that start the process.

The first and second rules in the list handle two different cases,
non-floors and floors respectively. Any face pointing directly upward is considered a
floor. In our example, there is only one floor. The first rule takes precedence over the

101

B e Lo~

assembie (H, house) :-
kind_of (E, exterior),
trans_partof (E, H),
contains (E, L),
assoemble (L, face).

assemble (H, houss) :-
kind_of (R, roof),
trans_partof (R, H),
contains (R, L),
assemble (L, face).

assembie (H, house) :-
kind_of (R, room),
trans_partof (R, H),
contains (R, L),
assemble (L, face).

Figure 50. Rules for Assembling Faces

assembie (L, face) =-
assemble1 (L, [], face).

assemble (L, face) :-
member (Face, L),
normal_Z (Face, 1),
assertz(operation (comment, ‘bulild floor as last step’, _, _)),
contalns (face, L.1),
assemble2 ([L1], [L1]), face).

assembiet (L, L1, face) :-
member (Face, L),
not (Normal_Z (Face, 1)),
delete (Face, L, L2),
contains (Face, L3),
assembiet (L2, [L3|L1], face), .

sssemble1 (L, L1, face) :-
assemble2 (L1, L1, face), 1.

Figure 51. Rules for Components of Faces

102

second and calls the third rule in the same figure. The third rule simply finds all faces
which are part of the area of concern but are not facing upward. Looking at the left side
of the third rule, assemblel(L,L1,face), L is the set of parts determined using the contains
relationship earlier and L1 is a set which we will construct. L1 is initialized to nil when
the first rule calls the third rule. When the third rule finds a face meeting its requirements,
the contains relation is again used to determine the parts of the face. This set of parts is
added to L1 and assemblel recursively calls itself looking for more faces. When none are
found, we fall through to the fourth rule which calls assemble2. The ! symbol at the end
of the assemblel rules prevents the system from backtracking into them. It will only
proceed forward into these rules. Backtracking is not necessary since we exit these rules

only when all faces meeting our specifications are found.

Looking again at the second rule in Figure 51, we put only one face
in the list at a time. Backtracking is necessary in the case where there is more than one
possible floor face. This may or may not be desirable depending on the house design.
For the other faces, a list of all faces in the area of concern is created using recursion to

allow a search for common building materials to better organize the design data.

Figure 52 shows the routines necessary to complete the face
assemblies. Note that assemble2 will recursively call itself until there are no face parts
left. It then falls through to the last rule which succeeds and thus exits. Again, no
backtracking is allowed or necessary.

The first two rules in Figure 52 search for all sub-covers letting
those sub-covers made of material already used in the area of concern take priority over
material not yet used. This is accomplished by searching through all the current operation
predicates looking for sub-covers already processed that use the same material. If such a
sub-cover is found, then a search is performed over the list of all sub-covers in the area of
concern to attempt a match. If a match is found, then that material has already been used
and will take priority. If no match is found, then the next sub-cover in the next face is
listed in the assembly report.

103

assemble2 (Fuli_L, L, face) :-
member (Face, L),
delete (Face, L, L1),
member (litem, Face),
kind_of (item, sub_cover),
property (item, materiai_type, Mtype),
operation (Y, _, _, Mtype),
member (Face1, Full_L),
member (Y, Face1),
assertz (operation (ltem, assemble, ‘'material type:’, Mtype)),
assemble2 (Full_L, [Face2|L1], face), I

assemble2 (Full_L, L, face) :-
member (Face, L),
delete (Face, L, L1),
member (item, Face),
kind_of (item, sub_cover),
property (item, material_type, Mtype),
assertz (operation (ltem, assemble, 'material type:’, Mtype)),
delete (Item, Face, Face1),
assemble2 (Full_L, [Face2|L1], face), !.

assemble2 (Full_L, L, face) :-
member (Face, L),
delete (Face, L, L1),
member (item, Face),
kind_of (Item, cover),
property (item, material_type, Mtype),
not (liquid ((Mtype, paint, , , , ,)),
operation (Y, _, _, Mtype),
member (Face1, Full_L),
member (Y, Facel),
assertz (operation (item, assembie, ‘'material type:’, Mtype)),
delete (Item, Face, Face2),
assemble2 (Fuli_L, [Face2|L1], face), |.

assemble2 (Full_L, L, face).

Figure 52. Rules for Completing Faces

104

The third and fourth rules provide a similar function for the covers
except that covers made from paint are not yet allowed to be listed. The painting will be
done at the end of the house construction to prevent damage to the finish.

The house is now close to completion. The window panes are
inserted into place, the windows and doors are painted, and the doors are installed using
the appropriate doorknobs and hinges. Now is the time to complete the painting of the
faces which was previously postponed. Figure 53 shows the rules for painting faces.

assemble (H, house) :-
kind_of (R, roof),
trans_partof (R, H),
contains (R, L),
paint_face (L).

assemble (H, house) :-
kind_of (E, exterior),
trans_partof (E, H),
contains (E, L),
paint_face (L).

assembie (H, house) :-
kind_ot (R, room),
trans_partof (R, H),
contains (R, L),
paint_face (L).

Figure 53. Rules for Painting Faces

Note that first the roof is painted (if necessary), then the exterior and
lastly we paint any interior surfaces. The paint_face routines are similar to ones we have

previously discussed. The one room house is now fully constructed.
(3) Raw Materials Listing

With the assembly data finished, the translator must now determine
the raw material requirements to build the house. This is done by calling on the

105

N

raw_materials_needed rules. All the rules work in much the same manner. They first
determine what component is being considered, then the material associated with this
component, and lastly the dimensions of the component. All dimensions are converted to
a common unit of measurement prior to calculations. Those parts of the house associated
with a face such as a cover or sub-cover call a routine get_area to determine the surface
area involved. This special routine is necessary since faces may have areas such as doors,
windows and openings which subtract from the total area of the face to be covered. This
is handled by calculating a negative area for each face to be subtracted out prior to
material requirements calculations. This negative area is then asserted as a fact for each
face prior to actual entry into the raw_materials_needed routines. A sample calculation

routine is shown in Figure 54.

raw_materlals_needed :-

kind_of (Extens, sub_cover),

dimension (Extens, depth, Th, Thunits),

property (Extens, material_type, Material),

material (Material, _, Ht, Htunlts, Wd, Wdunlts, Dp, Dpunits,
R . COSt),

match (Ht, Htunits, Wd, Wdunits, Dp, Dpunits, Th, Thuntts,
Act_Ht, Units1, Act_Wd, Units2),

get_area (Extens, Area, Unhts),

convert (Act_Ht, Units1, Act_Ht2, Units),

convert (Act_Wd, Units2, Act_Wd2, Units),

Num_Units is (Area / Act_Ht2 * Act_Wd2)),

Tot_Cost Is (Num_Units * Cost),

add_material (Material, Num_Units, Tot_Cost), fall.

Figure 54. Sample Calculation Routine

One aspect of how the above example works not yet mentioned is
the call to match. This rule attempts to find a match between the dimensions of the
material to be used and the thickness of the sub-cover within an acceptable tolerance.
This information is then used to determine the orientation of the material within the

106

e —

N

sub-cover. For example, if a board measuring two inches by four inches by four feet is
used to build a sub-cover which is four inches thick, then the two inch dimension would
be used for area calculations. This type of check is necessary since the dimensions
height, width, and depth are based on the view of the person determining the values.

Once the units of material required and cost are determined, these
values are added to the total by calling add_material. This rule first checks for any
previous data on this material. If some is found, then a new total is calculated and saved.
Otherwise, a new fact on the material of concemn is created and saved.

The only other unusual calculation performed during the material
calculations determines the frame requirements along the center of the roof, between the
roof and the ceiling. We need the height of the roof above the ceiling to make this
calculation. This is easy to do since the normal vectors for the roof faces are known. It
turns out that each component of the normal is equal to the cosine of the angle created by
the intersection of a line parallel to that component’s axis and the plane containing the
other two axis [Ref. 105]. Figure 55 demonstrates this concept.

X - Y plane
Z axis
Y axis
- - distance along X-Y
U, plane is equal to
/ cos B for a normal
/ vector U
8 ! /
....... //

Figure §5. Computation of Normal

107

The Z component of the normal vector is equal to the cosine of the
angle created by the intersection of the normal and the plane containing the X and Y axis.
With this fact, we can calculate the angle of intersection, Beta, of the roof and the house.
Using the dimensions of the roof faces, it is now possible to determine the height of the
roof above the ceiling since sin(Beta) is equal to the height of the roof above the ceiling
divided by the length of the roof face.

Once the quantities of materials and their costs have been
determined, a Raw Materials Report is produced. The report lists the units required and
cost for each raw material used. Following the list of raw materials is a total cost for the

product. Figure 56 gives an example of this report.

After the initial Raw Materials Report, the translator examines
possible material substitutions reported during the standards checks and makes each
substitution, one at a time, to generate a new report. Figure 57 is an example of a
modified Raw Materials Report output by the translator. It shows the cost for parts when
sub-cover14 is made out of tar-paper1 instead of tar-paper2.

D. SUMMARY

In this chapter we described the high-level approach to integration in detail. We
presented the data requirements for integrating CAD and CAM, the two activities
interfaced by our expert system translator. The data interactions between these two
activities were described in detail and demonstrated in our implementation of the
translator.

108

N

Raw Material Report

item Cost
doort $16
window1 $30
concrete $1737
wood8s $3582
tar_paper2 $841
hardboard32 $211
hardboard34 $147
hardboard78 $200
hard_wood9 $900
sheath_paper24 $64
shingle12 $2020
brick88 $4224
paint9 $8
paint17 $4
paint21 $12

347.5

Total materia! cost is $13996

Figure 56. Raw Materials Report

109

sub_cover 14 : substitute tar_paper1 for tar_paper2

Raw Material Report

Item Cost Units Required
doort $16 1
window1 $30 1
concrete1 $1737 347.5
wood8 $3582 434.2
tar_papert $504 3.4
tar_paper2 $420 34
hardboard32 $211 1.5
hardboard34 $147 15
hardboard78 $200 N 4
hard_wood9 $900 75
sheath_paper24 $64 9
shingle12 $2020 1616
brick8s $4224 3673
paint9 $8 1
paint17 $4 6
paint21 $12 9

Total material cost Is $14079

Figure 57. Modified Raw Materials Report

110

VII. LOW-LEVEL INTEGRATION OF MANUFACTURING
FUNCTIONS

A. MOTIVATION
In Chapter VI, we discussed the integration of product design and production

functiohs using an expert system translator. We discussed the manufacturing cycle and
the role that design functions play in that cycle by describing their data interactions.
Unlike previous process-oriented approaches, where a simple interface is placed between
manufacturing processes, our overall approach can be characterized as data-oriented.
With our approach, manufacturing activites will be grouped into several cooperating
systems, each with a single database server as its core; an approach we call low-level
integration.

In the current manufacturing environment, islands of automation provide computer
support for most manufacturing activities. In other words, there is a separate computer
system for each of the boxes shown in Figure 58. Some automate the design drawing
process, others automate process planning functions, and still others automate the
ordering of inventory parts. Although each phase is now more or less automated, the full
potential of computer-supported manufacturing cannot be realized unless these diverse
computer systems communicate adequately with each other. In the current environment,
data used in one phase cannot be used directly by the system supporting another phase.
For example, design data of a product in a computer-aided design (CAD) system cannot
be used directly by a computer-aided manufacturing (CAM) system for process planning
because these systems use completely different formats for data storage. To make things

worse, these data formats are often proprietary.

So the industrial and mechanical engineers have asked themselves an inevitable
question "Is it possible to have Computer Integrated Manufacturing(CIM), that allows all
phases of manufacturing to utilize each other’s data?" Many papers on the Computer

M1

Integrated Manufacturing topic which we have come across in the proceedings of
conferences such as AUTOFACT and CIM-International use the high-level approach
discussed in Chapter V1. At the early stage of our research, we too wrote a Prolog data
translator, also described in Chapter VI. The high-level approach is nice in that already
existing systems need not be modified. But the approach is not a long term solution to the
integration problem. This is merely an interface, a bridge shall we say, that simply
"connects” different components. The term "integration” should mean an embodiment of
pieces into a working whole, not just a juxtapositioning of them. By adding the
translators into the system, the whole manufacturing environment becomes even more
complex; there are more pieces of software to take care of. What would happen if the

internal workings of one component system are modified? We must write a whole new

l y 1
Industrial Markating Order
Project Enginserting Y Proosssing
Engineering Forecasting
Pmogu
Planing Sajes Accounting
//' Estimating Functions
Devign / NG Mach /
Enginesring Robot . Mastor Inventory
Programming Schedufing Management
CAD
\ 4
Quality Materials i
Control Requirerments Purchasing
Planning
CAM \
Shap Fioor L
Management Shinping
h
\ Y
FMS Control Maintenance
FMS BUSINESS

Figure 58. Manufacturing Functions

12

translator! This approach may be acceptable as a short-term, interim solution, but not as a
final solution for true integration.

There is a second approach. The Society of Manufacturing Engineers (SME)
proposed the CIM Enterprise Wheel approach depicted in Figure 59. As we can see from
the figure, the critical part is a common data server, the kernel of the Enterprise Wheel.
The figure makes sense. But, is it realizable?

+ Manufacturing Management & Human Resource Management +

Planning & Control
Marketing

facilities planning _‘
Automation Manufacturing

+ Strategic Planning +

Figure 59. CIM Enterprise Model

There are actually two ways to view this figure. The first one is to literally treat the
kernel as a centralized data management system. This centralized data server is normally
interpreted as a relational database management system. When the relational database
management system came into existence it was adapted in many diverse application areas
beyond the obvious business data processing. One of them is in the manufacturing
environment. We in the database community generally agree that for the relational
DBMS to be truly applicable to non-traditional areas, it must be extended to handle more
complex objects and semantics involved in manufacturing environment. Many good

13

ey oy e i g A B — . . a1

W L oy —— .

projects, such as [Refs. 100, 103, 109, 110, 111] and others, have focused on handling
complex objects and semantics in the database community. But many papers we have
come across in the proceedings of industrial and mechanical engineering conferences
such as AUTOFACT use the unextended, currently available relational systems. They
have treated an unextended relational system as a panacea for the data handling problem
in Computer Integrated Manufacturing. We in the database community know better:
cither the relational system must be improved or a completely new system must be
developed.

The second way to view Figure 59 is that the kernel data server is not the physical,
centralized database but a logical one. The kernel is a common data model applicable to
all phases of manufacturing. The actual operating environment will realize this kemnel as
a collection of distributed, semi-autonomous database systems. In our research, we have
taken this approach -- a common data model applicable to all phases of manufacturing --
with one major difference from what is envisioned in the CIM Enterprise Wheel.

After reviewing other works in Computer Integrated Manufacturing, we noticed a
remarkable commonality among them. Whether they use the interface or Enterprise
Wheel approach, they are all process-oriented. They accepted the traditional way of
categorizing manufacturing activities into design, engineering, numerical control
programming, process planning, inventory control, scheduling, etc. and then proceeded to
"integrate” them. On the other hand, our work may be classified as data-oriented. We
ignored the traditional categorization of activities.

We will show that the single activity of designing a product also outputs the
product’s process plan. In other words, from a data-oriented perspective, design and
process planning are not separate phases of manufacturing because both of them can be
supported by a single data server. We will rename them as the preparatory phase of
manufacturing.

We will also describe how our proposed data model, without any modification, can
be used to capture the semantics involved in describing a shop floor layout. This will be
the main information used in the Production Monitoring stage shown in Figure 1. The

14

PP

w LN ~ Rl

function which requires this information is the scheduler. We will describe a simulation
technique for scheduling and show that data for simulation is readily available from a
database server maintaining a shop floor layout -- a direct benefit of a data-oriented
approach. Consider what will happen if a process-oriented approach is taken for the
scheduling problem. In other words, what would we do, given a task of automating a
scheduling problem? We would first propose some kind of algorithm for finding an
optimal or near-optimal solution. Then, we would identify the data required as input to
the algorithm. Since we have solved the problem without much regard to the data already
in some database, we most likely will not be able to find a single source for all required
data. We will thus create a special data server, which holds all necessary data, just for the
scheduler. This data server will necessarily hold duplicate information, which leads to
potentially harmful data inconsistency. Since this data server is not connected to other
data servers in any way, data must be extracted manually. It is not economical to do
manually, so eventually we will develop software to automatically extract data from other
data servers. This software is exactly the translator we mentioned in the high-level
interface approach to integration. It should be clear from this example that this approach

is in fact exacerbating the integration problem.
Perhaps our major contribution is breaking the prevalent "mind set” of the

process-oriented approach. We hope that once this "mind set" is eliminated, expedient
progress toward true integration can be made.

B. THE DATA-ORIENTED APPROACH

In our preliminary research, we divided the basic manufacturing functions and
activities into four stages based on the type of function they performed. These four stages
were depicted in Figure 1, which is reproduced as Figure 60 for convenience. We applied
our data model to the design stage and developed the high-level translator described in
Chapter VI [Ref. 94]. After further research, we published a comparison of the three
approaches to integration discussed in Chapter III {Ref. 112]. At this point we decided
that the path to true integration involved the low-level integration approach, and

18

conceptualized our data-oriented solution [Ref. 113]. We applied our data model to the
process planning function, the focal point of the production planning stage of Figure 60,
and recognized the relationship that process planning has to product design using our
data-oriented perspective [Ref. 114]. We then determined that application of the same
data model to shop floor layout, the main data manipulator in the production monitoring
stage, would integrate the product design, production planning, and production
monitoring stages [Ref. 115]. The fourth stage, business activities, could be easily
integrated with the other three since the information used in business activities is available
as a byproduct of the other three stages.

i

;!

Production
Monitoring

i

Figure 60. Stages of Manufacturing

In this chapter, we will discuss our data-oriented approach in more detail. We will
apply our data model to product design and process planning, which we have combined to
form the preparatory phase of manufacturing. We will conclude the chapter with the
application of our data model to production monitoring.

1. Preparatory Phase of Manufacturing

We will begin this section by showing how our data model supports the
semantics of product design. We will then discuss our approach to process planning and

116

~——— - -

ey s e .V B . . "

the application of our data model to it. Our discussion continues with the integration of

the design and process planning functions.

a. Modeling the Semantics of Product Design

There are a number of concepts inherent in product design which need to
be modeled in order to adequately support that environment. Perhaps the best way to
demonstrate the support provided by our model is to describe the design process from the
viewpoint of the design engineer, showing at each step of the process how the model
handles the semantics involved. The explanation will be accompanied by figures

depicting a simulated user interface to our model.

The first decision faced by a design engineer in designing a new product is
choosing the best starting point. The new product can be either designed from scratch or
designed by modifying a previous product design. If the new product is designed from
scratch, a type hierarchy will be shown to the engineer. The types in this hierarchy will
be related by the generalization and specialization abstraction concepts. There will be one
type in the hierarchy for each product in the application domain. Figure 61(b) shows a

file type version instance query l

type hierarchy office
equipment
|-
| f |
stapler sharpener hole

(s) command issued {b) result

Figure 61. Type Hierarchy Displayed

17

sample type hicrarchy used in the design of office equipment. This hierarchy was
produced as a result of the engineer selecting the type menu and the hierarchy command,
as shown in Figure 61(a). The design engineer will select a type from the hierarchy by
positioning the arrow cursor (not shown in the figures) on the desired type and pressing
the left mouse button. This is indicated graphically by the bold rectangle surrounding the
selection.

Once a type is chosen, an instance of that type is created and a component
diagram will be made available for further manipulation. The component diagram
consists of other types related to the chosen type by the aggregation abstraction concept.
The instance of a selected type is created by using the instance menu and create
command, as shown in Figure 62(a). Using a combination of the information about the
type selected and the menu and command choices, the appropriate component diagram
will be displayed (Figure 62(b)).

file type version Instance query

file type version

type hierarchy component diagram : untitied
| hy
ﬁ property 1 sharpener
stapler sharper Property value jjg [
me body stend blade
y 8
desk portable 3 D)
hole hole

() command issued (b) result

Figure 62. Instance of a Type Created

If the new product is designed by modifying a previous product design,
the engineer selects the appropriate type from the type hierarchy and asks for the version

118

hierarchy for that selection (Figure 63). The engineer selects the version from the version
hierarchy which is the closest to the new product being designed. An instance of the

: selected version is created. The component diagram for the type from which the selected
version was created is then made available to the engineer (Figure 64).

flle type instance query flle type version Instance query
version hierarchy

(a) command Issued (b) result

k Figure 63. Version Hierarchy Displayed

file type version [instance | query file type version Instance query I

version hierarchy create : sheet metal body : untitied
4 ! component diagram
{hierarchy
sharpen property sharpener
] {property value [
L 1
4 zincI alloy sheet metal boldy stzlnd bllde
body body

I'"—Ll

screw suction

(a) command lssued (b) result

f Figure 64. Creating an Instance of a Version

119

At this point the engineer has an instance of either a type or an instance of
a version and a component diagram to work with. We will continue the discussion
assuming that the engineer is working with an instance of a type. As the property values
for the instance are provided and new component types are chosen from the component
diagram, the design schema for the new product takes form. Figure 65(a) shows a
selected component of the component diagram and the property command in the
instance menu being invoked. A prototype for the selected component appears, as shown
in Figure 65(b), with slots for property names and values. The property name, its domain,
and its value can be specified at this time, or the engineer can defer the property value
specification until a later time. If the property values are specified separately, the
appropriate component of the component diagram is selected and the property value

command in the instance menu is issued, as shown in Figure 66.

file type version Ilncunco I query I file type version Instance query l

component diagram create ; specify properties
delete :

hierarch !
sharpeny

sand blade

(s) command issued (b) resuilt
Figure 65. Specifying Properties

A distinction should be made between the two forms of aggregation found
in Figure 65. The component diagram shows an aggregation of the types which make up
a compound object (Figure 65(a)). The prototype is an aggregation of the properties of an

120

file type version 'lmunca I query file type version Instance query l
component diagram create specify property values

(s) command lssued {b) result

Figure 66. Specifying Property Values

object. The component diagram represents the structural content of an object while the

properties in the prototype represent the informational content of the object they relate to.

The engineer continues defining properties and/or specifying property
values until either a point is reached in the design where multiple alternatives are
necessary, or the design is complete. If multiple alternatives are desired, the engineer
selects the command to create an instance hierarchy. In this process, a copy of the current
instance, with its properties and property values, will be made for the new alternative.
Figure 67(a) shows the hierarchy command in the instance menu being issued. This
command works in several ways. First, if no instance hierarchy exists for the current
design project, invocation of this command will create a new hierarchy. If a hierarchy
already exists, invocation of this command will display it, which is the case shown in
Figure 68.

For an instance hierarchy to be created, one or more property values from
the current instance must be changed to create a new alternative instance. This can be

done by either modifying an existing property value, e.g., 14 in Figure 67, or specifying a

121

v

LY -

fils type version Instance quory

(s) command Issued

{b) resutt

Figure 67. Creating an Instance Hierarchy

(=) command lssued

fils type version stance | query fils type version instance query .
component diagram create instance hierarchy '
delete
sharpen propéity sharpener
| |property valug
4] | |__l_|
body stand biade body body
14 guage 16 guage

(b) result

Figure 68. Displaying the Instance Hierarchy

P————"

value for a property whose value was previously undefined, e.g., width in the same
figure.

To continue the design, the engineer will select one of the instances and
use the component diagram to complete the design. Figure 69(a) shows the body 16
guage instance being selected and the property value command in the instance menu
invoked. The result of this action, shown in Figure 69(b), is the resumption of the design
process at the point where it left off before the instance hierarchy was created. When the
design resumes, a prototype for the selected instance will be used.

file type version llnlhnco I query . file type version instance query l
instance hierarchy create) | specily property values

delete &

ierarchi

U

property domein : velue

material : string { tin

height metric
width metric

guage int 16

(a) command issued (b) result
Figure 69. Continuing with Property Value Specification

When the design is complete, the engineer decides whether or not to
archive the instance hierarchy since it will not be kept in its entirety by the system. The
instance from the hierarchy which represents the final product design is associated with
the version or type from which it was created using a command selected by the engineer.
The engineer may also decide at this time to create a new version from the final product
instance to be placed in the version hierarchy for the appropriate type. If a new version is

desired, the engineer will determine which property values from the final product instance

123

ey

will be used when the new version is created. Figure 70 depicts a new version being
created from the body 16 guage instance which is now completely specified. Each of the
prototypes which make up that instance will be presented to the design engineer so that
property values can be deleted to create a new version. The new version will be placed in
the version hierarchy using the save command in the file m.nu.

[me type N version || instance query . file type version Instance query l

[instance hi create delete property values
 dolets o create new version
hierarchy
N B
| -
body body

(») command lssued {b) result

Figure 70. Creating a New Version

It should be cleur from the preceding description of the design process that
our model provides the maximum possible flexibility at every step along the way. At the
same time, the confusion to the design engineer about the data model operation is

minimized due to the close correspondence between the modeling choices and the design
process.
b. Our Approach to Process Planning

Process planning (PP) specifies the operations to be performed on
different workpieces at different workstations in order to complete one production cycle.
Instead of the traditional approach to PP, our data-oriented approach views PP as being

divided into four phases. In the first phase, a gross decision on the process is made,

124

LI — L

categorizing a product based on the degree of machining versus assembly in the process
plan. The alternative decisions are whether a part should be 1) machined from raw
material, 2) machined from a casting, or 3) assembled from smaller components. The
first and second alternatives are forms of parts manufacturing where a workpiece is
transformed from the unmachined state into the finished state by stepwise changes of its
shape using machining processes. Assembly can be visualized as a process in which
individual components such as parts and sub-assemblies are added to the finished product

by assembly processes using assembly fixtures.

The second phase selects the appropriate operations and sequencing
according to the decision made in the first phase. Each operation can be viewed as a

transformation which takes a product from one state to another.

The third phase selects a machine type for each operation selected in the
second phase. This selection is based on standard PP practice and does not take into
account the actual availability of machines on the shop floor. In the parts manufacturing
case, tasks performed during this phase include the layout of cutting sequences and a
pattern, determination of cutting parameters, i.e., depth of cut, feed rate, speed of cut, and

calculation of machining times.

The fourth phase selects a tool type for each machine type selected in the
third phase. Again, this selection is made based on standard PP practice and not on
availability of specific tools.

¢. Modeling the Semantics of Process Planning

In the traditional manual process planning activity, data describing a
product is placed on paper in the form of drawings and specifications. Both are revised
and developed to higher levels of detail, potentially producing redundant and sometimes
incomplete data. The redundant data leads to maintenance and consistency problems.
The data which is produced in one process plan has little chance of being used in
subsequent plans due to its manual nature. The engineering drawings produced during

this manual process are given to a planning engineer who decides which operations,

125

R T T T R R R REEEEEEEE——————
T N -

machines, and tools are required. We will show how the use of our model in process
planning alleviates these problems and provides a natural environment for an industrial
engineer to work in.

Our approach to PP is to represent the set of alternative process plans for a
product family as an acyclic directed graph, with the possible choices from each phase of
the PP activity present. Figure 71 provides an example of two alternative process plans
for a pencil sharpener, represented as an acyclic directed graph. The middle portion of
the graph is used by both alternatives to produce the blade for the sharpener. Given this
example, we will describe the activities involved in producing the alternative process

plans, again showing at each step how our data model handles the semantics involved.

pencil ‘
sharpener
cast “..“_.___...."_-l;
body | N T k
. — ~
move to §ind stamp boed
stoel sides
machine strip front
shop - and :

- back dril and
machine drit tap hole
the ends sirp

" cut strip and
drill and tap
hole "". ble
inspect body inspect blade inspect body
assembie assemble
and and
inspect inspect

Figure 71. Alternative Process Plans

The industrial engineer has to be familiar with the product to be
manufactured before beginning process planning work. Using our paradigm, the same
conceptual schema used by the design engineer is available to the industrial engineer (as a

component diagram). The conceptual schema represents a generic product to be designed

126

and manufactured. Using the information about the aggregations of types in the schema
and the properties defined during the design process, the industrial engineer will develop
a generic process plan.

Work on the process plan can be done from scratch or using previous
work saved by the system, a situation analogous to that faced by the design engineer at
the start of product design. If the decision is made to work from scratch, the industrial
engineer will use the conceptual schema for the product to guide the development of the
process plan. The first step is to create an instance of the type which the conceptual
schema represents. Next, a component of the schema at the lowest level is chosen. The
development of the process plan will be a bottom-up process, since the bottom-most
portion of the conceptual schema represents the most primitive components of the product
to be manufactured. Once the process plans for these primitives are defined, the next
higher level can be considered. Since the levels in the conceptual schema are related by
the aggregation abstraction concept, the process plan for each higher level will only have
to deal with combining the process plans for the next lower level. Normally, this will
entail some type of assembly procedure which is fairly easy to specify. The development

continues, step by step, until the topmost level is reached.

For each primitive in the conceptual schema, the industrial engineer will
determine which information can be specified directly and which has to be parameterized,
or deferred. Parameters will be replaced by data for a specific product when this generic
process plan is actually used in production. Information such as machine type and tool
type may be specified during process plan development. However, other information
such as the length of a cut will be a function of the dimensions of the workpiece and will
therefore become a parameterized entry in the generic process plan.

If the industrial engineer chose to use previous work as a starting point,
the version hierarchy for the type of product concerned would be displayed. As with the
design engineer, a choice would be made form the hierarchy which is as similar as

possible to the desired process plan. An instance of the selected version would be created

127

ﬁ A g —— ~——

and work would proceed level by level, with the use of the conceptual schema, in the
manner described previously.

When the generic process plan is completed, it will be added to the
version hierarchy (in the appropriate place) of the type from which it was directly or
indirectly created.

Once again, we have demonstrated that our model naturally supports a
major manufacturing function. We have provided maximum flexibility in the
development of process plans by making use of several of the abstraction concepts
available in our model. By producing generic process plans which are parameterized and
reusable, we have implemented the group technology concept and reduced the complexity

of developing process plans.

d. Integrating Design and Process Planning Functions

We have shown the role that group technology plays in process planning
and how our data model exploits that role in reducing the complexity of the problem of
developing process plans. The abstraction concepts used in our data model easily capture
the semantics of the process planning environment. As mentioned earlier, we have used
the same data model to capture the semantics involved in the product design activities.
We have been successful up to this point in applying the same modeling concepts to
different manufacturing functions.

The design and process planning functions utilized the same conceptual
schema and modeling concepts for their respective work. This means that for a given
product, its conceptual design schema has a parameterized process plan associated with it.
This parameterized process plan is a generic process plan for the family of parts
represented by that schema. For example, Figure 72 is a conceptual design schema for a
cabinet. The component door will have a generic process plan associated with it. The
process plan is generic because the actual values for the plan are not yet specified. It is
more like a template showing the general sequence of processes without the values of the
parameters specified.

128

—

e —

T hatt TN - — T Tw -~
Cabinet
door lott i
assermbly side :.M op wheels

= [~] = =
=

Figure 72, Conceptual Design Schema

i

When the designer creates a particular cabinet from this conceptual
schema, he will fill in the design details such as the dimensions, color, type of door, etc.
The generic process plan will simultaneously become a specific process plan with all the
parameter values filled in for this particular cabinet. Thus, the design activity produces
both the design and process plan for a particular product. There is no need for separate
activities for design and process planning. We have achieved integration wherein design
functions produce the required information for both activities. The integration achieved
by the process-oriented approach, on the other hand, is just an automatic interface
between the design and process planning activities. That is, by using the information
available from the design, the interface would produce a process plan. This is undesirable
from the standpoint of data consistency because it would require duplicate representation
of the products, not to mention the complexity of the translation process itself.

2. Production Monitoring

The production monitoring stage of manufacturing includes activities such as
quality control, scheduling, and shop floor control. Production monitoring gets its
prominence from the effect that misutilization of resources and missed due dates have on
the profitability of a company. Due to increasing costs and shrinking market shares, a lot
of emphasis is being put on this aspect of manufacturing.

129

The focal point of production monitoring is the scheduling function. We have
already discussed the current approaches to scheduling in Chapter II and indicated the
infeasibility of producing optimal schedules which have to consider unforeseen events
which may occur (such as machine breakdown). We will present an alternative approach
to scheduling which uses the shop floor layout to allocate manufacturing resources to
process plan components. We will then show how our data model handles the semantics
of shop floor layout and conclude this section with an example to demonstrate our

approach.
a. Our Approach to Scheduling and Shop Floor Layout

Our approach to scheduling is to represent the shop floor layout as an
acyclic directed graph, where the nodes of the graph represent machines and the edges of
the graph depict the transportation media between the machines. Each node and edge in
the graph can have a job allocated to it. Figure 73 provides an example of a portion of a
shop floor. The boxes labelled "pallet” depict nodes which are pallet pools for machine
centers. This figure could have been more detailed, with nodes for the individual

machines in the machine centers.

| == boring machine a
== boring machine b
==boting machine ¢

o

miling maching b=

2
¢
E‘#"\).

Figure 73. Shop Floor Layout

130

The process plans for all products currently being manufactured form a
subgraph of the shop floor graph at a given point in time. The components of the process
plan are divided into three categories, working, ready, and waiting. The working
components are those which have been allocated a resource. The working components
form a subgraph of the shop floor graph. The ready components are those which could
begin execution if the required resources were available. The waiting components have
prerequisite components and cannot be scheduled until those other components have
completed processing, at which time they become ready components. Figure 74 shows a
process plan, depicted as an acyclic directed graph. The components of the process plan
are labelled check-in, spindle, milling, boring, and assembly. Initially, the check-in
component will be the only ready component, the others will be waiting. Once the
check-in has been completed, the spindle and milling components become ready, and can
be scheduled concurrently if the proper resources are available.

check-in

— T

spindle milling

boiing /
~

assembly

Figure 74. Sample Process Plan

The scheduling problem involves overlaying the ready components onto
the shop floor graph, looking for nodes with more than one component. The presence of
such a node would indicate that two or more jobs require the same resource at the same
time. For these nodes, the standard priority rules could be invoked to determine which
job will be assigned to them. The problem of scheduling now becomes a problem of
modeling the competing process plans and manufacturing resources for each designated
unit of time. This we believe is a major advantage of our approach. That is, the

131

scheduling problem is reduced to a simulation of the competing process plans and
available resources, and uses the data made available by the integrated design and process
planning functions directly.

b. Modeling the Semantics of Shop Floor Layout

We previously discussed the relationship between the design and process
planning functions. The data model which we developed was used to model those
functions and provided the necessary semantic facilities to combine them into a single
activity. Our approach to scheduling and shop floor layout was expressed in terms of the
process plans created by that activity. We will continue by showing how our data model
handles the semantics of shop floor layout, the activity which drives the scheduling
function and determines the overall efficiency of production.

We will demonstrate the applicability of our data model by considering
the shop floor layout process. The resources available to be configured can be arranged
into a hierarchy of types using the generalization/specialization abstraction concepts. The
resources will be grouped into manufacturing cells to implement the flexible
manufacturing system (FMS) concept discussed in Chapter II. Each cell will appear in a
version hierarchy for the type of cell involved, and will use the aggregation abstraction
concept to associate the various resources which are the components of that cell. New
cell layouts can either be designed from scratch or developed by modifying a previously
designed cell. Once again, the situation is analogous to that seen previously in the
discussions on product design and process planning semantics. In fact, we now find
ourselves using the system we have described to design the shop floor layout; a design
which will eventually become part of the overall manufacturing system.

Individual manufacturing cells will be designed using a conceptual
schema as a guide. After all of the individual cells are completed, they will be aggregated
to form a layout of the shop floor. The information produced during the entire layout
process can be saved and used again at two different levels. Information on individual
cells can be modeled separately from the information about how those cells are
aggregated to form a shop floor layout.

132

W T — L — e

¢. An Example

We will demonstrate our approach by use of an example. Figure 75
depicts the shop floor to be used throughout this example. Transportation resources are
not shown in the figure but are available to move batches from one machine resource to
another. The ovals under a particular heading represent instances of that type of machine;
i.e., there arc four actual milling machines on the shop floor. As each resource is used,
the attributes which define its implementation change to reflect the new state of the
machine. For example, the tool type attribute of a machine may vary from one job to

another.

check-in
station
@)
spindle milling machines
machines
oD O ' X X X
boring machines assembly stations
a> ab SO S

Figure 75. Shop Floor

Figure 76 shows the average processing time per workpiece required for
each resource in this example. In actuality, that number could vary among machines of
the same type, especially in the case where a machine is operating below its normal
capacity due to need for repair. Newer machines of a given type may also be more
efficient and therefore require less time to perform a particular operation. Our simulation
will vary capacities among similar machines to reflect these types of conditions. Figure
77 shows the number of time units required for transportation of batches from one

resource to another.

133

n1 - < —~—— R e e —

time units required

resource per piece
spindie machine 2
boring machine 1
milling machine 5
assembly station 4

Figure 76. Average Processing Time

time units required
from to per batch
check-in spindle machine 2
check-in boring machine 2
check-in milling machine 3
spindle machine boring machine 2
spindie machine milling machine 1
spindle machine assembly station 2
boring machine milling machine 2
boring machine assembly station 1
milling machine assembly station 2

Figure 77. Transportation Requirements

134

Figure 78(a) - (¢) shows the five process plans to be scheduled in this
example. Figure 79 provides priority and finished product quantity information for each

process plan.
check-in check-in check-in
spindle milling spindle milling boring milling
boring assembly assembly
~~ ®) ©
assembly
(a)
check-in
check-in / \
1 spindle milling
bori !
rlmg boring
\
assembly assembly

@ (e)

Figure 78. Example Process Plans

process part priority
plan quantity (1ls highest)
A 10 1
B 5 5
c 12 1
D 3 4
E 15 3

Figure 79. Priority and Finished Product Information

We will assume that the necessary raw materials have been checked in and
that the first task for the scheduler is to transport those materials to the appropriate

resource. A simulation, written in Prolog, will show the sequence of events as the

135

scheduler proceeds. Besides the data from Figures 76, 77, and 79, and the process plan
information shown in Figure 78, the simulation has information about each individual
machine on the shop floor describing the time required for that machine to complete a
given operation with a particular tool. The Prolog program for the simulation is included
in the data-oriented prototype program listing attached as Appendix C.

In the first time unit, the transportation system moves materials from the
check-in station to the spindle station for process plan (a), and to the boring and milling
stations for process plan (¢). Note that since process plans (a) and (c) have the same
priority, the scheduler could have moved materials to the milling station for plan (a)
instead of (c). Since it takes two time units for transportation to both the spindle and
milling stations, and three time units for transportation to the boring station, all machines
will be idle until time unit three. After the ninth time unit, the factory floor is in full
production, with each machine resource fully utilized. After the 10th time unit, one of the
boring machines becomes idle and remains idle until the 13th time unit.

After the 30th time unit, production begins winding down. The spindle
and boring machines are idle, having completed their work on the example process plans.
After 69 time units, all milling machines are idle, and the only work remaining involves
assembly stations. The simulation continues assembly work until the comnletion of the
98th time unit, when all work is completed.

One advantage in using this simulation approach to scheduling is that we
can change the parameters for the shop floor and rerun the simulation to determine the
impact. For example, if from the first simulation run we suspected that having more
assembly stations would speed up the overall operation, we could add assembly stations
and verify our suspicion. The simulation would detect bottlenecks and help to alleviate
them. The simulation could include allowances for machine downtime due to periodic
maintenance, increase in capacity of a machine due to repair, decrease in capacity of a

machine due to tool setup time, and any other foreseeable events.

Another major advantage in using this simulation approach is that the
scheduling to be performed can be modeled at different levels of abstraction, which

136

provides increased flexibility and applicability. For example, if the details of the setup

time aren’t important due to infrequent changes, they can be abstracted out of the
problem. An advantage to our use of Prolog as the programming language for the
simulator is that expert system technology can be applied when desired.

C. SUMMARY

In this chapter we described the low-level approach to integrating manufacturing
functions. We described our data-oriented approach and showed that the activities of
product design and process planning could be integrated using that approach. We
described the application of our approach to shop floor layout, which resulted in the
integration of the production monitoring activities with the already integrated design and
process planning activities, thus providing for integration across the spectrum of
manufacturing functions.

137

VIII. EVALUATION

A. COMPARISON OF DATA MODELS

We have briefly described several data models and contrasted some of their features
with our own data model (see Chapters IV, V, VI, VII). In this chapter, we will
consolidate and expand the discussion of current data models to provide some means of
comparison with our model. We will describe some typical scenarios from the
manufacturing environment and show how four of the existing data models would fail to
provide the same degree of semantic support as that offered by our model.

The nature of data models precludes any quantitative comparison or evaluation of
competing models [Refs. 93, 116). Consequently, we are limited in our ability to
quantitatively compare our model with those previously defined. In addition, it is not
possible to address every known data model in the discussion - there are hundreds of
models in existence. The models which we selected are representative of those known
models.

1. Manufacturing Activities to be Modeled

The first activity we will discuss involves the initiation of a product design
from scratch. We will assume that the product to be designed is not similar to any
previously designed product and therefore, none of the information about previously
designed products is of use.

The second activity we will address involves the product design situation
where the new product to be designed has properties and/or components which are similar
to those in some previously designed product. In this case, the designer will use the
information (from the previous product) about the similar features as the starting point for
the new design.

138

The next activity we will be concerned with is complementary to the activity
just mentioned. In this case, as engineer will create an intermediate starting point for
future work. In this scenario, the engineer might know that the product design just
completed will be similar to future design efforts. The creation of this intermediate
starting point would reduce the amount of redundant design work in those future designs.

The last activity we will use involves the ability to create multiple alternatives
to be used temporarily in a product design. The design engineer may decide to pursue
one alternative, change his mind, and switch t0 some other alternative. All of the
alternative information must be kept and made accessible to the designer. Once the
design is completed, the information about the alternatives can be discarded or archived.

2. Support Available From Existing Models

We will begin our discussion of support available from existing models by
considering the relational data model. We have already stated in Chapter IV that this
model suffers from limited semantic expressiveness, a serious drawback to its use in
manufacturing applications. In particular, this model does not provide a means of
expressing one object as the aggregation of other objects. Figure 80 depicts a car as an
aggregation of a body, wheels, and an engine. A relational schema for this example
would have one relation for each box in the figure. The problem with trying to associate
the three relations body, wheels, and engine with the relation car is that the model has to

treat the values "body"”, "wheels", and "engine" in two different ways. First, they have to

car

body wheels engine

Figure 80. Sample Aggregation

139

—— e T o
W: TN

be attribute values in the car relation to relate the car to its components. Secondly, they

have to be used as relation names for the objects they represent. The standard relational

model is not capable of matching the attribute values with the relation names in order to

model the aggregation. This is one example of the limited semantic expressiveness of the
\ relational model. This limitation precludes the use of this model in supporting the
g activities described in the previous section.

Other models have been developed which have application potential beyond
that of the relational model due to their use of some of the abstraction concepts discussed
previously in Chapter IV. One example is the Semantic Database Model (SDM) [Ref.
100]). SDM uses the aggregation and instantiation abstraction concepts and therefore
captures more of the meaning of an application environment than is possible with the
relational model [Ref. 101]. We find two major problems in trying to employ SDM in the
manufacturing environment. First, the model has too many features. If a database model
contains a large number of features, then it will likely be difficult to learn and to apply
[Ref. 100]. Secondly, the model has no means of directly supporting the second, third,
and fourth activities described in the previous section. In order to use information from a
previous design, a new class would have to be defined such that the new class inherits all
of the attributes, but only some of the attribute values, from the previous design. SDM
has no facility for this type of inheritance. If some of the attribute values are inherited,
then all of them must be. Even if the inheritance problem were overcome, SDM would
have to create a new, separate class for each different set of attribute values to be
inherited. The basic problem with SDM is that it has no notion of a version. Without this
concept, design work always has to start from scratch and little, if any, previous

information can be re-used.

The data model proposed by Katz [Ref. 46] includes support for versions, and
therefore models the first, second, and third activities mentioned in the previous section.
However, the fourth activity, which involves alternative designs, is not supported [Ref.
46]. In addition, only a single version of an object is maintained by the system, requiring

future work to begin from a single point.

140

' ' . TN — g

e e M . e s ey -

We have made repeated reference to the work by Batory and Kim [Ref. 92]. It
is from this work that we get the definitions of version and instance used in our model. In
addition, as we discussed in Chapter V, the two models differ in their definition of version
hierarchy. The Batory and Kim definition defines version hierarchies as aggregations of
other versions, allowing for flexibility in defining the implementation details for a
particular product. Again, their model does not support alternative designs for the same
product, a feature we feel is necessary in a data model supporting the manufacturing
environment.

In the models proposed by Katz and Batory & Kim, alternative designs can be
supported by the system only if the user creates and maintains the alternatives himself. It
will be up to the user to remember the relationships between the alternatives and the

individual identifiers for each alternative. This places an unnecessary burden on the user.

In Chapter VII we discussed the support provided by our data model for the
activities mentioned in the previous section and other manufacturing activities as well. It
is clear from the preceding discussion that our model captures more of the semantics of

the manufacturing environment than any of these previously defined models.

B. DATA-ORIENTED VS. PROCESS-ORIENTED APPROACH

In this section we will present an example in which the data-oriented approach we
have developed is more desirable than the process-oriented approach. We will use this
example to illustrate the differences between the two approaches. The example we have
chosen involves the design and production of a metal table. The table has three types of
components, a top, some number of legs, and a connection for each leg which fastens it to
the top. Since we are only interested in highlighting the differences between the
process-oriented and data-oriented ap~_oaches, we will not be concerned with issues such

as design integrity constraints which have to be considered in both approaches.

We have demonstrated the differences between the two approaches by implementing
a prototype for each approach. In this section, we will discuss the prototype

implementations, show how the process-oriented approach handles our example, and then

141

show how the data-oriented approach handles the same example. The discussion will be
supplemented by figures which are actual screen dumps of the prototypes with colors
converted to black. The actual implementations were developed using color to better
distinguish information shown in the display to the user.

1. Prototype Implementations

a. General Information

The prototype implementations were written in the Turbo Prolog™
programming language. The prototypes use 640 x 350 resolution graphics with support
for 16 colors. The complete program listings for both prototypes appear in Appendix C.

b. The Design Module

The two prototypes begin by allowing the user to load a conceptual
schema for the product to be manufactured. The conceptual schema contains information
about properties of the components of the product as well as properties of the
relationships between components, where applicable. The user has the option of
specifying values from scratch for the defined properties, or can load previously defined
data and resume from the point at which the data was saved.

The design module screen layout contains four windows, as shown in
Figure 81. The largest window, referred to as window number one in the program, shows
the conceptual schema, the name of the file containing the conceptual schema data, and
the name of the file containing previously defined design data, if one was loaded.
Window number two appears to the right of window number one and is used as the menu
window. As various design functions are performed, menu alternatives appear in the
menu window. Menu alternatives are selected by positioning an arrow cursor using a
mouse. Once the cursor is pointing at the desired menu alternative, pressing a mouse
button will invoke that alternative. Window number three is referred to as the data
window and appears beneath the menu window. The data window is used to display
design data to the user once the Updata Data alternative is chosen from the top-level

menu. Window number four, the status window, is located beneath window number one.

142

The status window is used to display messages to the user and to receive responses to

those messages.

Pr Orjented Systen Honu

Y Load C Schoma
Load Design Data

Updats Data

Save Design Data

Quit

Pata

—S8tatus
Select a Command from the Menw Window

Figure 81. Initial Design Screen Layout

2. The Process-Oriented Prototype

Figure 82 shows the data interactions required by the process-oriented
J prototype. The product design function produces design data which is then translated into
, the format required by the process planning system. For the purposes of this discussion
P‘ we will assume that the high-level interface described in Chapters III and VI is used to
perform the translation function. The translated design data and other process planning

rules are used as input to the process planning function to produce the process planning
data. The difference between the process planning rules used as input and the process
planning data produced as output is that the output data is specific to a given product,
while the input rules are generic and assist the process planner in producing data for a
specific product. The process planning data is translated using the high-level approach to
produce data which can be used by the scheduling function. The scheduling rules shown

143

o= T

in Figure 82 refer to information about the shop floor resources which are available at the

time the scheduling is performed.
product
o [i
data
transiation to
process planning
~ transiated
design data
process process
P'm:o planning \\ process
planning
data

transiation to
scheduling
format

L“ vanslated ’
proco:lmp‘hnnmq
”"";“"“"

by time unit

Figure 82. Process-Oriented Prototype

a. Product Design

Figure 83 shows the screen layout after the file table.dat is loaded using
the Load C Schema alternative in the menu window. The conceptual schema shown in
this figure represents the metal table used as our example. We will assume for simplicity
sake that the designer is resuming the design using data stored previously in the file
h design.dat.

1 Once the design data is loaded, the designer selects the Update Data
alternative from the menu window to continue the design of the table. Figure 84 shows
the screen layout at this point. The designer will select ore of the types top, connect, or

leg by pressing the mouse button with the arrow cursor inside the appropriate conceptual
schema box. In the actual implementation, the color of the text representing the selected

144

e

——————————Procoss Oriented Systen o
Schama File: table.dat
Y Load C Schema
Load Design Data
Update Data
Save Design Data
top
Quit
comnect
Data
log
Status:
Sslact a Command from the Menu Vindow

Figure 83. Conceptual Schema File Loaded

Pr Oriented Systen Menu
Schema File: table.dat
Data File: design.dat *
Quit
top
coumect
Data
leg
Status
Select a Type or "Quit’

Figure 84. Second Level Menu

145

type is changed to distinguish it from the other types. At this point, the screen layout
appears as shown in Figure 85. The user may choose to add to the existing data for the
selected type, modify that data, view that data, or return to the second level menu shown

in Figure 84.
r————m Oriented Systen ~HNenu:
Schoma File: table.dat
Data File: design.dat 8 Add data
Change data
View data
top Quit
connect
—Data
leg
-Status:
Select a Command from the Meru Vindow

Figure 85. Third Level Menn

Figure 86 shows the screen layout after the Add data alternative is
chosen. The data window now contains the names of the properties for the selected
object. The status window is used to get user input to specify the values which the
properties will take on. When the data for a single object has been entered, the screen
display changes back to the display shown in Figure 85.

We will assume at this point that the designer completes the specification
of the design data and saves the data in the file design.dat.
b. Translation of Design Data

Once the designer has finished specifying values for the properties for the
objects comprising the desired product, and that data is saved, a translation process takes

146

— .

Schema Flle: table.dat
Pata File: design.dat 8 Add data

Change data
View data

top Quit

—=#dd Data

height
leg vidth:

tolerance:
material:
Status finish:

Enter height:

Figure 86. Adding Design Data

place which transforms the data from the format produced by the design system into the
format required by the process planning system. In our prototype implementation, we
assume that islands of automation exist for the design, process planning, and scheduling
functions. As previously stated, we use the high-level interface approach to convert data

between these islands of automation.

In the case of our example metal table, four legs have been defined which
connect to the top using a welding connection for two of the legs, a bracket for the third
leg, and a screw-on connection for the fourth leg. The variety of connections is used to
give some diversity to the design data.

c¢. Process Planning

Figure 87 shows the screen display when the translated design data
reaches the process planning function. Two exceptions have been detected by the process

planning system which will require changes to the design data. The first exception

involves the table top, where a tolerance of .1 was specified for the height, width, and

Process Plamning:
process plaming started

Exception Report
Namorandum
To: Design

Departnont
From: Process Plamning Department
Subject: Exceptions on design projact topi

The valus of the tolsrancs for this projact is
too restrictive. A value of .5 or greatsr is far leas
costly than the valus .1

The valus of the redius far this project is
too expenzive. A value of 1.5 or 1.75 is far less
costly than the value 1

Hit "ENTER’ to continue

Figure 87. Process Planning Exceptions

depth dimensions. The exception notes that a value less than .5 is unacceptable due to the
cost involved. The second exception involves the radius of the screw-on leg, which was
specified to be one inch. The factory has a shortage of one inch radius material and a
surplus of 1.5 and 1.75 inch radius material, leading to the exception.

The result of the exceptions is the automatic generation of the
memorandum shown in Figure 87, which will be sent to the Design Department. The
design data will have to be modified to conform to the exceptions noted in the
memorandum, re-translated, and re-processed by the process planning system. Note that
all of the design data will have to be re-translated and re-processed, not just the portion of
the data which was modified. In our example, the design data was changed, re-translated,

and no exceptions were noted by the process planning system the second time around.

d. Translation of Process Planning Data

When the product data is processed by the process planning system and no
exceptions are detected, another high-level translation occurs which converts the process

148

planning data into the form required by the scheduling system. In the case of our example
metal table, this translation occurs with no problems.

e. Scheduling

The translated process planning data is input to the scheduling system
where it will compete for resources with the other products being manufactured
simultaneously. Before the scheduling system can begin execution, the input data must
be screened for exceptions. The screw-on leg in our example metal table has created an
exception because the milling machine required to tap the screw threads is out of service.
Again, a memorandum is sent to the Design Department advising them of this exception.
The result of this scheduling exception, which is shown in Figure 88, is that the design
data must be modified a second time, re-translated for use by the process planning system,
a new process plan created, and the process planning data re-translated for input to the
scheduling system. In our example, the design modifications are made, the data is
re-translated and the scheduling function produces a schedule showing which zsources
will be allocated to the metal table and its competing products during production.

—3Schedul ing:

Exception Report.
Nemorandum
To: Design Department
From: Scheduling Department
Subject: Excaptions on design project topil

The machine you have requested, milling machine
for this project is

Out of service for 68 time units

Pleass revise your design and resubnit.

Hit 'ENTER’ to continue

Figure 88. Scheduling Exception

149

S

TN\ -

3. The Data-Oriented Prototype

Figure 89 shows the data interactions required by the data-oriented prototype.
The product design function takes the design specifications, process planning rules, and
scheduling rules as input and produces process planning data using the values of the
object properties entered by the user during the design process. The scheduling function,
implemented using the simulation approach discussed in Chapter VII, uses the process
planning data to produce the final schedule.

process
planining
rules
uct l design ,
':::lgn specifications
scheduling
I
process
planning
data
scheduling
schedule
by time unit

Figure 89. Data-Oriented Prolotype

a. Product Design

The design function in the data-oriented approach operates similarly to its
counterpart in the process-oriented approach with a few exceptions. Figure 90 shows the
screen layout for data-oriented design after the conceptual schema and design data have
been loaded. Up to this point, there is no difference in the operation of the two design
functions.

150

Data Oriented System —enu:
Schena File: table.dat
Data File: dosign.dat 1Y Load C Schoma
Load Design Data
Update Data
S8ave Dezign Data
top
Quit
connect
Data
leg
Status
Select a Command from the Menu Window

Figure 90. Data-Oriented Design

Figure 91 shows the screen layout after the Update Data alternative is
selected from the menu window, top is selected, the Change data alternative is selected
from the menu window, and the name topl is entered. At this point the user wants to
change the tolerance of the dimensions to .35, so that value is entered in the status
window in response to the prompt shown there. Figure 92 shows the result of entering
that particular value - it is rejected. Note that when an exception occurs, the design
system will not permit the user to proceed until the exception has been removed. One
result of this mode of operation is that any design data which is saved has to have been
free of exceptions when it was created. It is still possible that when the design data is
used by the scheduling function exceptions will arise, but at least they will be minimized.

Each of the other exceptions noted in the execution of the process-oriented
prototype will displayed to the designer as the values of properties are entered. This, in
effect, gives the designer access to all of the pertinent information about the production of
a product while it is being designed.

151

L X O

N

———————Da
Schena File' table.dat

ta Oriented System

Data File: design.dat

top

leg

Status

Enter tolerance: .35

(Y Add data
Change data
View data

Quit

———Change Data—m--—,
nane: topl
height: 2.5
width: S0
depth: 35
tolerance: .5
material: steel
finish: paint

Figure 91. Specifying a Property

Value

Data Oriented System -HMenu
Schema Fila: table.dat
Data File: design.dat K Add data
Change data
View data
top Quit
commect
——Change Data———
name: topl
height: 2.5
leg width: 58
depth: 35
tolerance: .5
Status material: steel

The value of the tolerance far this project is too
restrictive. A value of .5 or greater is far

less costly than the value .35

Press ‘ENTER’ to contimue

finish: paint

Figure 92. Process Planning Exception

152

b. Process Planning

The use of our low-level data-oriented approach allows the process
planning function to be integrated with the design function into a single activity, as was
discussed in Chapter VII. In our data-oriented prototype, this means that the process
planning data required for the scheduling function is output from the design process,
which we take to be the integration of design and process planning. As was shown in
Figure 89, process planning still has a separate database of information used to perform
process planning functions. However, this database is used by the product design

function.

¢. Scheduling

The data-oriented approach allows the scheduling function to use the data
produced by the product design function directly. Figure 93 shows the initial scheduling
display created by the scheduling simulator. The time unit is shown in the upper right
corner of the screen. The check-in station shows one rectangle for each process plan to
be scheduled. Each machine resource has one input and one output queue for each
process plan to be scheduled, and the number of resources of a given type are represented
by squares next to the machine name. In the original implementation, color is used to
distinguish the different process plans being scheduled. Every movement of material and
machine operation for a particular process plan can be monitored by watching the various

queues and machine resources for the color of the desired process plan.

Figure 94 shows the screen display during the scheduling process at time
unit 20. Each series of five square dots represents transportation resources being used.
Again, in the original prototype, these dots are colored to correspond to the process plan
utilizing the transportation resource. The same is true for the solid rectangle shown inside
a machine resource square. The solid rectangle is colored so that the viewer can tell

which process plan is utilizing a particular machine resource.

153

-y

gadia of

Shop Floor Simulation

SEEEn check-in

cutting ooooo ooooo boring
machines [][] OO0 nachines
ooooo ooooo
m]s[n]=]n! aoooo
welding (][] oOOooOoOoo assenbly
machines Hoooo ooooo stations
finishad
Figure 93. Initial Scheduling Display
Shop Floor Simulation
check-in Timel20)
cutting | | |ajm] | ooooo doring
machines [B] (@] (@] O = machines
Qooan B0000
m] Inin}] ... 0O0omOo
velding Wmm®m ., - o s o s L
A o T T T [= B ooooo sHations

[] finished

Figure 94. Scheduling Display at Time Unit 20

154

LY e

Figure 95 shows the scheduling screen display at the completion of time
unit 42. Note that several input queues at the assembly stations and welding machines are
full, but no work is being done by the resources there. This happens when all of the
materials for a particular operation are not physically in the same place. For example, the
welding of legs to the table tops cannot begin until all of the legs have been cut and
transported to the welding machines, where the tops are waiting. At the same time, the
legs which are to be attached by brackets to the table top are waiting at the assembly

g,

! station for the welding to be completed. Figure 96 shows the scheduling screen display at

the completion of the scheduling run.

—Shop Floor Simulation

T

cutting omoom 0oooa boring

wachinas (@] @] [@] - wachines
80000 00oaooo
210000 L} Jujai |

mihs, OODO COOOD
0oooo 0oooaa

4 [¥] finished

Figure 95. Scheduling Display at Time Unit 42

155

—Shop Floor Simulation—

check-in T inall?S
ooooo ooooo
tti bori
nachines [1 CICT wachines
ooooo ooooo
0ooooo 0oooo
velding 3 OO0 assenbly
machines Hoooo 0oooo stations
BEBEN finished

Figure 96. Display at Completion of Scheduling

156

4. Summary
The prototypes we have implemented point out the advantages of using the

data-oriented approach. Using our example metal table and the process-oriented
approach, the design data was translated three times by one translator, run through the
process planning system three times, translated by the second translator twice, and
processed by the scheduling system twice. The data-oriented approach avoided all of the
translation and the repetitive process planning and scheduling effort by making data
available where it was needed.

157

VIII. CONCLUSION

A. SUMMARY

It is clear that manufacturing companies need to react to changes much faster and in
a more flexible way than in the past due to increasing worldwide competition, decreasing
market shares, and shortage of qualified industrial and manufacturing engineers.
Businesses are becoming increasingly complex due to the exponential growth rate of the
technologies supporting them. How can the information flow, design, and manufacturing
processes of such businesses be optimized, while maintaining marketplace presence,
increasing productivity, and decreasing production costs? There is no perfect soluiion in
terms of automation alone. Computer Integrated Manufacturing provides a short and
long-term approach to a solution. The major problems to be solved are all related to
integration and to providing for the possibility of further developments in technology.
Those integration problems will be more easily solved when powerful computers are
linked with the machinery on the shop-floor and with the factory organization as a whole.

We have described and demonstrated our data-oriented approach to the integration
of manufacturing functions. Our data model, presented as a series of data abstraction
concepts, clearly captures the semantics of the manufacturing environment and provides a
common kernel around which those manufacturing functions can revolve. Our
data-oriented perspective allowed us to conceptualize, re-organize, and simplify the
product design and production process. The description of our low-level interface
approach demonstrated the reduction in complexity which results from the use of our
paradigm. In short, one of our major contributions is breaking the "mind set" of the
traditional process-oriented approach to integration.

The application of our approach will not be easy for manufacturing companies to
undertake. We expect that our perspective of the manufacturing process, if adopted, will
cause some initial turmoil as steps are taken toward integration. There will always be

158

PRI

resistance to change and leaming curves to deal with. The anticipation of impending
control itself will cause anxiety and concern among employees. However, the benefits to
be derived by making the change to our approach, which include better decision-making
ability as a result of better control over information, should outweigh the initial
investment. Employees will be more productive and the use of other manufacturing
resources will be optimized because of the increased availability to relevant information
afforded by the use of our data model. Again, our contribution to manufacturing will be a
solution to the integration problem which makes these improvements a reality.

We have stated that the traditional database management systems lack the capability
of expressing the structural and relationship aspects of the objects which exist in the
manufacturing environment. Our solution was to identify the data requirements of
various manufacturing functions and then create a data model to support them. Simply
stated, our contribution to computer science in general and database systems in particular

is the solving of a complex problem using a novel data-oriented approach.

B. EPILOG

When we first considered doing research in semantic data modeling, we didn’t have
any particular goal in mind other than a general goal of developing a database
management system capable of supporting advanced application areas such as office
automation, cartography, and CAD/CAM. We looked at the major semantic models
which were previously developed and noticed that most of those models were designed to
support specific application environments such as VLSI design. The abstraction concepts
they included were not easily applicable and in some cases the models themselves were
not easily extendible to increase their functionality. Our solution was to take parts of
various models to create a new model and then supplement that model with our own
abstraction concepts to increase its modeling power and therefore, its applicability.

We then considered the advanced application areas to which the model would be
applied and decided on CAD/CAM. We choose house construction as the example for
the application of our model since we could relate to it more readily than to other

159

industrial manufacturing examples. Our concept was to develop a user interface which
could be used to "walk" a perspective home buyer through a model house. The user
would see the features of the house just as if he were actually there. The placement of
fixtures, doors windows, walls, and wiring, plumbing, and heating runs, etc., could be
displayed at different levels of detail, according to the user’s level of interest. The idea
was to have a complete prototype of the house displayable on a high-resolution graphics
screen before construction actually began. The house would have been previously
designed using our proposed data model to specify and relate the various components
involved. We agreed that our concept was nice and desirable, but was not a significant

research problem.

During this initial stage of our research we also considered using a formal language
approach to the problem of internal representation of design objects. The terminal
symbols of the language would correspond to the primitive design elements of the
construction environment, e.g., boards, nails, etc. The nonterminals would represent
subassemblies of those primitive components and the grammar rules would specify the
restrictions on the use of primitives and sub-assemblies in producing higher order
complex objects. The language itself could be a context-free or modified
context-sensitive language. This idea was put on the back burner since it was more
implementation oriented than we wanted to deal with at the time. It is still on the back

burner and will be pursued by the author as a follow-on to this thesis research.

It occurred to us that what we lacked was an overall project showing our direction,
which we could chip away at, one piece at a time. We had noticed this characteristic in
most of the work being presented at conferences -- they were reporting on some small
aspect of research which was part of a much larger project. This led to the development
of our high-level approach to integration. We laid out a diagram of the major
manufacturing processes which make up CAD and CAM and decided to build a translator
between the two which would produce the bill-of-materials and operations sequence
information required for CAM using the data available from CAD. We decided to use a
rule-based system and subsequently wrote the translator in Prolog, using an expert system

160

approach. We published our first conference paper shortly afterwards, describing our data
model and the translator we had developed.

Between the time when we wrote this paper and presented it at the conference, we
realized how impractical it would be to use the high-level approach in an actual setting.
We had already conceptualized a different approach. We researched the current literature
on database work in CIM and found that most attempts at integration were similar to our
high-level approach and therefore in the author’s opinion, are doomed in the long run.
We saw from this research that a major problem was that the product life cycle itseif was
never changed when automation was introduced. People were viewing integration as a
machine replacement process where manual work was being automated but no
consideration was given to whether or not the work could have been done more
efficiently some other way. Our answer was the data-oriented approach which we now

call low-level integration.

We applied our data model to each of the major functions in the product life cycle,
looking for the commonalty among them. It was during this process that we discovered
the close relationship between product design and process planning. Our conclusion was
that the two previously separate activities could be combined into one and the product life
cycle was redefined.

The relevance of our work had been shown by the referee comments provided to us
in the submission of conference papers and by the continued acceptance of our work in
the engineering community. We applied our paradigm to the scheduling and shop floor
layout aspects of manufacturing,which we considered to be our last major hurdle. The
use of our approach had significantly reduced the complexity of the scheduling problem.
It was true that we could not produce an optimal schedule any more than anyone else
could, but what we could do was to show how better scheduling decisions could be made
using the information that is inherent in that environment. It became clear that our
approach had promise. Again, the relevance of our approach was shown when a reviewer
of our scheduling paper decided to use it for a concurrent programming project which he
had managerial responsibility for.

161

C. DIRECTIONS FOR FUTURE WORK

In this kind of research one question seems to surface repeatedly. What next? The
real value in research is that it is never-ending. Every time one problem is solved, new
problems unfold. This is certainly true in our case. We will answer this question in two
parts. The first part will deal with implementation-oriented issues; those which will
eventually lead to a working system. The second will deal with research-oriented issues.

In Chapter VII, we demonstrated how our model handles the semantics of product
design. In that discussion we used figures which depict a generic user interface which
would manipulate our data model. The development of such a user interface is a
significant step in implementing an overall system. It would be useful in addressing some
of the research-oriented issues presented below. We will have to carefully consider the
question of how to develop an overall system which implements our paradigm. While we
have criticized the relational model for its lack of semantic expressiveness at the
conceptual level, it will probably be the most likely choice for the physical level model in
such a system.

There are two major research-oriented issues to address. The first is the extension of
our approach to other application environments. There are other manufacturing
technologies such as FMS to which our model could be applied. Even though FMS tries
to integrate manufacturing functions, it is still furthering the islands of automation
problem. There is a substantial investment in the FMS technology and we feel there may
be some short-term benefits to be realized in applying our model.

We feel our data model may be well-suited to other applications outside of
manufacturing as well. Since our model isn’t tied to any particular representation of
objects, such as 3-D, it may be useful for modeling the multimedia and software
engineering environments. We believe these two applications have many of the same
semantics that we have seen in our research and therefore our model could be directly
applicable.

Our notions of version and version hierarchy could be especially useful in

supporting the software engineering environment. Software development is a key

162

ingredient in that environment. The program development and maintenance aspects of
software development involve making changes to programs to fix errors and increase
functionality. There is a requirement to maintain both the old, unmodified program and
the new program which has the changes incorporated. Our version abstraction concept
will model the program modification aspect while the history of modifications could be
modeled by our version hierarchy concept.

The aggregation abstraction concept is also useful for modeling certain aspects of
software engineering. Using a modular approach to program development, a program
itself can be viewed as an aggregation of the modules which perform the input, output,
and data manipulation operations. At a higher level of abstraction, software systems can
be modeled as aggregations of programs and subroutines. We are convinced that our
model is powerful and flexible enough to be used to support program development.

The second research-oriented issue deals with the various integration strategies
which can be used to implement our paradigm. We have stated that our low-level
approach is a long-term solution. In order to realize that solution, consideration will have
to be given to the proper interfacing of other systems and other research results.
Strategies will have to be adopted for transitioning from the islands of
automation/high-level integration if our long-term solution is to be successfully

implemented.

163

r*——-'—!—— <

H 10,

LIST OF REFERENCSZES

Mortimer, J., ed., Integrated Manufacture, Springer-Verlag, New York, 198S.

Schlesinger, R.J. and Tiersten, S., "CIM Assaults Walls Between Front Office and
Shop Floor", Hardcopy, Dec 86, pp. 45-58.

Wu, C.T.,, "Towards Fully-Computerized Database Maintenance for
Non-Traditional Applications”, Fall Joint Computer Conference, 1987, pp.
469-474.

Asimow, M., Introduction to Design, Prentice-Hall, 1962.

Rembold, U. and Dillman, R., eds., Computer-Aided Design and Manufacturing.
Methods and Tools, Springer-Verlag, Berlin, 1986.

Requicha, A.A.G. and Voelcker, H.B., "Solid Modeling: A Historical Summary and
Contemporary Assessment”, IEEE Computer Graphics and Applications, 2, 2,
1982, pp. 9-24.

McLaughlin, H W, "Describing the Surface: Algorithms for Geometric Modeling",
Computers in Mechanical Engineering, Nov 86, pp. 38-41.

Lee, Y.C. and Fu, K.S., "A CSG Based DBMS for CAD/CAM and its Supporting
Query Language”, Engineering Design Applications, 1983, pp. 123-130.

Initial Graphics Exchange Specification (IGES), Version 2.0, National Bureau of
Standards, 1983.

"An Interface Between Geometric Modelers and Application Programs",
CAM-International Report R-80-GM-04, 1980.

Wilson, P.R., et al,, "Interfaces for Data Transfer Between Solid Modeling
Systems", IEEE Computer Graphics and Applications, 5, 1, 1985, pp. 41-51.

164

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23

Leach, L.M., A Language Interface for Data Exchange between heterogeneous
CAD/CAM Databases, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY,
1983.

Groover, M.P. and Zimmers, EW., CAD/CAM: Computer-Aided Design and
Manufacturing, Prentice-Hall, 1984.

Freedman, R.S. and Frail, R.P., "OPGEN: The Evolution of an Expert System for
Process Planning", The Al Magazine, 7, 5, 1986, pp. 58-70.

Sheu, P. and Kashyap, R.L., "Object-based Process Planning in Automatic
Manufacturing Environments", JEEE International Conference on Robotics and
Automation, 1987, pp. 435-440.

Conaway, J., "What’s in a Name: Plain Talk About CIM", Computers in
Mechanical Engineering, Nov 85, pp. 23-31.

Chang, T-C. and Wysk, R.A., "Interfacing CAD/Automated Process Planning",
AIIE Transactions, Sep 81.

Hegland, D.E., "Out in Front with CADCAM at Lockheed - Georgia", Production
Engineering, Nov 81.

Wright, PK. and Englert, P.J., "Sharpening the Senses of Industrial Robots",
Mechanical Engineering, May 86, pp. 58-63.

Ullman, J.D., "NP-Complete Scheduling Problems", Journal of Computers and
System Science, 10, 1975, pp. 384-394.

Fox, B.R. and Kempf, K.G., "Reasoning About Opportunistic Schedules", JEEE
International Conference on Robotics and Automation, 1987, pp. 1876-1882.

Gallimore, J., "How to Make MRP Really Work", The Production Engineer, Mar
84, pg. 22.

Leahy, J.A., "Management Issues in JIT and OPT Implementations”, Annual
International Industrial Engineering Conference, 1985, pp. 82-87.

165

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3S.

Leahy, J.A., "Integrating Just In Time and Optimized Production Technology", Fall
Industrial Engineering Conference, 1986, pp. 315-318.

Tompkins, J.A. and Cramer, M.A,, "Just In Time: The Real Story", CIM
Technology, Aug 87, pp. CT31-CT32.

DeVries, M.F., et al., Group Technology, Publication MDC 76-601, Machinability
Data Center, Cincinnati, Ohio, 1976.

Greene, T.J.,, "Is Cellular Manufacturing Right for You?", Annual International
Industrial Engineering Conference, 1985, pp. 181-190.

Fenves, S.J. and Rasdorf, W.J., "Treatment of Engineering Design Constraints in a
Relational Data Base", Engineering With Computers, Springer-Verlag, 1, 1985, pp.
27-37.

Rasdorf, W.J., "Extending DBMS’s for Engineering Applications", Computers in
Mechanical Engineering, Mar 87, pp. 62-69.

Date, C.J., An Introduction to Data Base Systems, Addison-Wesley, Vol 1, fourth
ed., 1986.

Rasdorf, W.J., "Perspectives on Knowledge in Engineering Design", International
Computers in Engineering Conference, ASME, Vol 2, 1985, pp. 249-253.

Rasdorf, W.J. and Wang, T.E., "CDIS: An Engineering Constraint Definition and
Integrity Enforcement System for Relational Data Bases", International Computers
in Engineering Conference, ASME, Vol 2, 1986, pp. 273-280.

Stonebraker, M., Rubenstein, B., and Guttman, A., "Application of Abstract Data
Types and Abstract Indices to CAD Data Bases", Engineering Design Applications,
1983, pp. 107-113.

Traughber, T.J., "Software Design Considerations for Computer Aided Process
Planning (CAPP)", Texas Instruments Technical Report 86082.

Luby, S.C., Dixon, J.R., and Simmons, M.K., "Creating and Using a Features Data
Base", Computers in Mechanical Engineering, Nov 86, pp. 25-33.

166

36.

37.

38.

39.

41.

42.

43.

45.

46.

47.

ﬁ LI —— -

Dube, R.P. and Smith, M.R., "Managing Geometric Information with a Database
Management System", JEEE Computer Graphics and Applications, Oct 83, pp.
57-62.

Lorie, R. and Plouffe, W., "Complex Objects and Their Use in Design
Transactions”, Engineering Design Applications, 1983, pp. 115-121.

Lorie, R., et al, "Supporting Complex Objects in a Relational System for
Engineering Databases", in Query Processing in Database Systems,
Springer-Verlag, New York, pp. 145-155.

Taraman, S.R., "A Relational Data Model for a Manufacturing Database", Annual
International Industrial Engineering Conference, 1985, pp. 195-203.

Wedekind, H. and Zoemtlein, G., "Conceptual Basis for Database Applications in
Flexible Manufacturing Systems (FMS)", IEEE CH 2413-3, 1987, pp. 551-557.

Tulkoff, J., "Process Planning in the New Information Age", CIM Technology, Aug
87, pp. CT19-CT22.

Brodie, M.L. and Mylopoulos, J.,, On Knowledge Base Management Systems,
Springer-Verlag, New York, 1986.

Barkocy, B.E. and Zdeblick, W.J., "A Knowledge-Based System for Machine
Operation Planning", Proceedings of AUTOFACT 6, 1984, pp. 2.11 - 2.25.

Phillips, R.H. and Mouleeswaran, C.B., "A Knowledge-Based Approach to
Generative Process Planning", Proceedings of AUTOFACT 7, 1985, pp. 10.1-10.15.

Ebeid, S.J., "Computerized Machinability Data Base Systems as Applied to
Non-Conventional Machining Processes", Association for the Advancement of
Modelling and Simulation Techniques in Enterprises, Review, 4, 1, 1986, pp. 7-17.

Katz, R.H,, "A Database Approach for Managing VLSI Design Data", 19th Design
Automation Conference, 1982, pp. 274-282.

Stonebraker, M. and Guttman, A., "Using a Relational Database Management
System for CAD Data", IEEE Database Engineering Bulletin, 1982.

167

51

52.

53.

54.

55.

56.

57.

58.

59.

48.

49.

W o Lo —— —

McLeod, D., Narayanaswamy, K., and Bapa Rao, K.V., "An Approach to
Information Management for CAD/VLSI Applications”, Engineering Design
Applications, 1983, pp. 39-50.

Kent, W., "Limitations of Record-Based Information Models", ACM Transactions
on Database Systems, 4, 1, Mar 79, pp. 107-131.

Afsarmanesh, H., et al., "An Extensible Object-Oriented Approach to Databases for
VLSI/CAD", 11th International Conference on Very Large Data Bases, 1985, pp.
13-24,

Jones, J.E. and Turpin, W., "Developing An Expert System for Engineering",
Computers in Mechanical Engineering, Nov 86, pp. 10-16.

Su, 8$.Y.W,, et al., "The Architecture and Prototype Implementation of an Integrated
Manufacturing Database Administration System, IEEE Computer Society
COMPCON, 1986, pp. 287-296.

McLean, C.R. and Brown, P.F., "Process Planning in the AMRF", CIM Technology,
Aug 87, pp. CT23-CT26.

Buchmann, A.P. and deCelis, C.P., "An Architecture and Data Model for CAD
Databases", 11th International Conference on Very Large Databases, 1985, pp.
105-114.

Vrba, J.A., "CAM for the 80’s - Distributed Systems Using Local Area Networks",
AUTOFACT 6, 1984, pp. 10.14-10.27.

Elgabry, AXK., "Communicating Product Definition and Support Data in A
CAE/CAD/CAM Environment", AUTOFACT 7, 1985, pp. 9.11-9.26.

Baer, T., "MAPping the Factory", Mechanical Engineering, Jan 86, pp. 70-73.

Mulvey, P. and Sheftic, R., "Information Flow on the Factory Floor: A Network for
Automation”, Computers in Mechanical Engineering, Jul 86, pp. 15-19.

Shah, M.J. and Brecher, V.H., "Distributed Computer Control in Manufacturing”,
Computers in Mechanical Engineering, Nov 85, pp. 50-56.

168

61.

62.

63.

65.

66.

67.

68.

69.

70.

71.

72.

L o -

Williams, T.J., "Recent Developments in the Application of Plant-Wide Computer
Contwrol", Computers in Industry, Apr 87, pp. 233-254.

Fong, J.T., "Integration of Analysis and Data Bases for Engineering Decision
Making", Computers in Mechanical Engineering, Jul 86, pp. 42-55.

Brown, D.C. and Posco, P., "Looking for Trouble: Expert Browsing In
Manufacturing Data Bases”, Computers in Mechanical Engineering, Nov 86, pp.
19-23.

Davis, R.P., et al.,, "Manufacturing Systems Planning - The Key to Production
Control", International Industrial Engineering Spring Annual Conference, 1979,
PP. 295-302.

Barish, M.M., "Computerized Systems in the Scheme of Things", International
Industrial Engineering Fall Conference, 1979.

Allen, M.A,, Keynote Address, WESTEC ’84, Mar 84.

Greene, T.J., "CIM Goes Beyond Production and Inventory Control", Production
and Inventory Control Division Newsletter, Institute of Industrial Engineering, vol
XIX, no 1, 1984.

Clancy, J., quoted in Industry Week, 224, 5, 1985, pg. 52.
Conaway, J., quoted in Industry Week, 224, S, 1985, pg. 49.

Saxe, K., "MRP-II Into CIM: The Interface Phase", AUTOFACT 7, 1985, pp.
3.1-3.6

Marshal, J. and Van Dyne, D., "Integrating CAE, CAD and CASE", Digital Design,
Jun 86, pp. 40-46.

Okogbaa, O.G., et al., "Scheduling Rules for Just-In-Time Policy in a Computer
Integrated Manufacturing System", International Industrial Engineering
Conference, 1985, pp. 137-144,

"CADCAM - Clarifying the Connection", Staff Report, Mechanical Engineering,
Mar 87, pp. 45-47.

169

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

8s.

86.

Beeby, W., "The Future of Integrated CAD/CAM Systems: The Boeing
Perspective”, IEEE Computer Graphics and Applications, Jan 82, pp. 51-56.

"Computer Integrated Manufacturing: The Focus of Manufacturing Control”,
Assembly Engineering, May 83, 26,5, pp. 12-16.

Gondert, S.J., "Understanding the Impact of Computer-integrated manufacturing”,
Manufacturing Engineering, 93, 3, Sep 84, pp. 67-69.

Schroeder, C., "CADMAC, Next Step on the Path to CIM", AUTOFACT 7, 1985,
pp. 9.41-9.63.

Pinte, J M., "A Computer-Integrated Manufacturing System for the Metalworking
Industry”, AUTOFACT 7, pp. 3.35-3.53.

Kusiak, A., "Design and Management of Computer Integrated Manufacturing
Systems", Fall Industrial Engineering Conference, 1986, pp. 353-361.

Tsichritzis, D.C. and Lochovsky, F.H., Data Models, Prentice-Hall, 1982.

Langefors, B., "Information systems theory", Information Systems, 2, 1977, pp.
207-219.

Bubenko, J.A., "The Temporal Dimension in Information Processing, Architecture
and Models in Database Management, G.M. Nijssen, Ed., North-Holland, 1977, pp.
93-118.

Abnal, J.R., "Data Semantics”, in Data Base Management, North-Holland, 1974,
pp. 1-59.

Yao, S.B., ed, Principles of Database Design, vol 1, Prentice-Hall, 1985.

CODASYL Data Base Task Group Report, Conference on Data Systems Languages,
Association for Computing Machinery, 1971.

Maier, D., The Theory of Relational Databases, Computer Science Press, 1983.

Su, S.Y.W., "Modeling Integrated Manufacturing Data with SAM*", /IEEE
Computer, Jan 86, pp. 34-49.

170

87.

88.

89.

91.

92.

93.

94,

95.

96.

97.

98.

Biller, H. and Neuhold, E.J., "Semantics of Databases: The Semantics of Data
Models", Information Systems, 3, 1978, pp. 11-30.

Smith, JM. and Smith, D.CP,, "Database Abstractions: Aggregation and
Generalization", ACM Transactions on Database Systems, 2, 2, Jun 77, pp.
105-133.

SOWA, J.F., Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, 1984.

Presman, R.S., Software Engineering: A Practitioner’s Approach, McGraw-Hill,
1982.

Mylopoulos, J., Bernstein, P.A., and Wong, HK.T., "A Language Facility for
Designing Database-Intensive Applications”, ACM Transactions on Database
Systems, S, 2, 1980, pp. 185-207.

Batory, D.S. and Kim, W., "Modeling Concepts for VLSI CAD Objects", ACM
Transactions on Database Systems, 10, 3, Sep 85, pp. 322-346.

Brodie, M.L., "Association: A Database Abstraction for Semantic Modelling", 2nd
International Entity-Relationship Conference, 1981, pp. 577-602.

Madison, D.E. and Wu, C.T., "An Expert System Interface and Data Requirements
for the Integrated Product Design and Manufacturing Process", IEEE International
Conference on Data Engineering, 1987, pp. 610-618.

Chen, P.P.S., "The Entity-Relationship Model - Toward a Unified View of Data",
ACM Transactions on Database Systems, 1, 1, Mar 76, pp. 9-36.

Shipman, D.W., "The Functional Model and the Data Language DAPLEX", ACM
Transactions on Database Systems, 6, 1, Mar 81, pp. 140-173.

Buneman, P. and Frankel, R.E., "FQL - A Functional Query Language", ACM
SIGMOD International Conference on the Management of Data, 1979.

Housel, B.C., Waddle, V., and Yao, S.B., "The Functional Dependency Model for
Logical Database Design", Fifth International Conference on Very Large Data
Bases, 1979, pp. 194-208.

m

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

Brodie, M.L., "On Modelling Behavioural Semantics of Data", 7th International
Conference on Very Large Data Bases, Sep 81, pp. 32-42.

Hammer, M. and McLeod, D., "Database Description with SDM: A Semantic
Database Model", ACM Transactions on Database Systems, 6, 3, Sep 81, pp.
351-386.

Borgida, A., "Features of Languages for the Development of Information Systems
at the Conceptual Level", Technical Report LCSR-TR-52, Laboratory for Computer
Science Research, Rutgers University, Dec 83.

Su, S.Y.W. and Lo, D.H,, "A Semantic Association Model for Conceptual Database
Design", International Conference on the Entity-Relationship Approach to Systems
Analysis and Design, Dec 79.

Codd, E.F., "Extending the Database Relational Model to Capture More Meaning",
ACM Transactions on Database Systems, 4, 4, Dec 79, pp. 397-434.

Goldberg, A. and Robson, D., Smalltalk-80: The Language and Its Implementation,
Addison-Wesley, 1983.

Davis, H.F. and Snider, A.D., Introduction to Vector Analysis, Allyn and Bacon,
Inc., 1975, pp. 1-11.

Schek, HJ. and Pistor, P., "Data Structures for an Integrated Data Base
Management and Information Retrieval System", International Conference on Very
Large Data Bases, 1982, pp. 197-207.

Hayes-Roth, F., Lenat, D.B., and Waterman, D.A., Building Expert Systems,
Addison-Wesley, 1983, pp. 219-235.

Winston, P.H., Artificial Intelligence, Addison-Wesley, 1984,

Batory, D.S. and Buchmann, A.P., "Molecular Objects, Abstract Data Types, and
Data Models - A Framework", International Conference on Very Large Data Bases,
1984, pp. 172-184.

Guttman, A. and Stonebraker, M., "Using a Relational Database Management
System for Computer Aided Design Data", IEEE Database Engineering, S, 2, 1982.

172

L o

Ne——

B

1L

112

113.

114.

115.

116.

L —— -

Haskin, R. and Lorie, R., "On Extending the Function of a Relational Database
System", ACM SIGMOD Conference on the Management of Data, 1982, pp.
207-212.

Madison, D.E. and Wu, CT., "The ’Integraton’ in Computer Integrated
Manufacturing”, International Conference on Engineering Design, 1987.

Madison, D.E., Wilbur, T.G., and Wu, C.T., "Data-Driven CIM", Computers in
Mechanical Engineering, 6, 5, 1988.

Madison, D.E. and Wu, C.T., "A Database Approach to Computer Integrated
Manufacturing: Process Planning Using Group Technology”, International
Conference on CAD/ICAM, Robotics, and Factories of the Fusure, 1988.

Madison, D.E. and Wu, C.T,, "A Database Approach to Computer Integrated
Manufacturing: Scheduling and Shop Floor Layout", Naval Postgraduate School
Technical Report NPS52-87-047, submitted for publication.

Brodie, M. L., Mylopoulos, J.,, and Schmidt, J. W., editors, On Conceptual
Modeling, Springer-Verlag, New York, 1984.

173

APPENDIX A - TRANSLATOR PROGRAM

A. MAIN PROGRAM

start :-
not(begin_stds_check),
not(begin_operations),
not(set_neg_area),
not(raw_materials_needed),
not(materials_report),
not(report_subst).

begin_stds_check :- kind_of(Extens,Intens),
write(’check for’),write(Intens),write(’ *),write(Extens),nl,nl,
check(Extens,Intens), fail.

check(Extens,Intens) :-
property(Extens,material_type,Material),
material(Material,Spec_Mat,_,_,_, , , . . , .,),
comment_for(Intens,Spec_Mat,Class),
comment(Class,Comment),
writeC ’),write(Comment),nl,nl.

check(Extens,Intens) :-
property(Extens,material_type,Material),

material(Material,Spec_Mat, _,_,_, , . , , . ,.),
check_for(Intens,Spec_Mat,Class),
member(Material,Class),

writeC ’),write(Intens),write(’ *),write(Extens),

write(’ meets requirements; allowed substitutes are:’),nl,nl,
member(Other_Mat,Class),

not(Other_Mat = Material),

write(" - ’),write(Other_Mat),nl,nl,
assertz(substitute(Extens,Other_Mat)).

174

check(Extens,Intens) :-
property(Extens,material_type ,Material),
material(Material,Spec_Mat,_, , , , ., , ., ., .),
check_for(Intens,Spec_Mat,Class),
not(member(Material,Class)),
write(C ’),write(Intens),write(’ ’),write(Extens),
write("does not meet requirements; allowed substitutes are:’),nl,nl,
member(Other_Mat,Class),
write(- ’),write(Other_Mat),nl,nl,
assertz(substitute(Extens,Other_Mat)).

check(Extens,door) :-
dimension(Extens,Dimension,Z,Units),
minimum(door,Extens,Dimension,X,Unitx),
maximum(door,Extens,Dimension,Y,Unity),
convert(X,Unitx,Min,Units),
convert(Y,Unity,Max,Units),
check_standards(door,Extens,Dimension,Z,Min,Max).

check(Extens,pane) :-
property(Extens,quality,Value),
minimum(pane,Extens,quality,Min),
check_standards(pane,Extens,Value, Min).

check_standards(Intens,Extens,Dimension,Value,Min,Max) :-
not(Min > Value), not(Value > Max),
write(" ’),write(Intens),write(’ *),write(Extens),
write(’ passed - ’),write(Dimension),nl,nl,!.

check_standards(Intens,Extens,Dimension,Value,Min,Max) :-
Min > Value,
write(C ’),write(Intens),(’ *),write(Extens),
write(’ failed minimum - *),
write(Dimension),ni,nl,!.

check_standards(Intens,Extens,Dimension,Value,Min,Max):-
Value > Max,
write(" ’),write(Intens),write(’ '),write(Extens),
write(’ failed maximum - °),
write(Dimension),nl,nl,!.

175

check_standards(pane,Extens,Value, Min) :-
not(Min > Value),
write(" ’),write(’pane ’),write(Ex:ens),
write(’ passed quality check’),nl,nl,!.

check_standards(pane,Extens,Value, Min) :-
Min > Value,
part_of(Extens,Window),
kind_of(Window,window),
write(" ’),write(’pane ’),write(Extens),
write(’ failed minimum quality check’),nl,
write(" - part of ’),write(Window),nl,nl,!.

begin_operations :-
kind_of(H.house),
not(do_assembly(H)),
not(operations_report(H)),
fail.

do_assembly(H) :- assemble(H,house),fail.

operations_report(H) :-

nl,nl
W;itt;(’*"‘**"’*"‘**********"‘"‘**************************’),nl,
write("* **),nl,

write(” Production Sequence Report for °),

write(H),nl,nl,

print_style(H),

write(’* *) nl,

Writc(’******************"‘**************************’),nl,nl,!,

operation(Extens,Function,Attribute1,Attribute2),
print_operation(Extens,Function, Attribute 1, Attribute2),
fail.

176

-

print_operation(comment,Comment,_,_) :-
nl,
wﬁte(’*** ’),nl,
write(’* **),nl,
write(’ comment :),
write(Comment),
nl,

write(’* **),nl,
WTite(## ¥ bk bbbk bbbk b bk bk koo kbbb kbbb ko)] 1

print_operation(Extens,Attribute1,Attribute2,Attribute3) :-
write(Extens),
name(Extens,L1),
length(L1,N1),
tab(15 - N1),
write(Attributel),
get_name_len(Attribute1,N2),
tab(15 - N2),
write(Attribute2),
get_name_len(Attribute2,N3),
tab(17 - N3),
write(Attribute3),nl,!.

get_name_len(Name,Len) :-
number(Name),
not(integer(Name)),
name(Name,L1),
length(L1,N1),
Lenis (N1 - 4),..

get_name_len(Name,Len) :-
name(Name,L1),
length(L.1,Len),!.

print_style(H) :-
property(H,subtype,Hstyle),
write(’- house style is °),
write(Hstyle),nl,
write(" and consists of *),
contains(H,L),
write(LL),nl,!.

177

m‘r\

print_style(H).

/* routines to calculate surface area of faces taken up by */
/* doors, windows, openings, and connections */

X set_neg_area :-
kind_of(Extens,face),
X . set_neg area2(Extens,[1,0,feet),fail.

set_neg_area2(Face,L,Area,Units) :-

e } face(Extens,Face),

not(member(Extens,L)),

kind_of(Extens,window),
dimension(Extens,height,Ht,Htunits),
dimension(Extens, width, Wd, Wdunits),
convert(Ht,Htunits,New_Ht,Units),
convert(Wd,Wdunits,New_Wd,Units),

New_Area is (Area + (New_Ht * New_Wd)),
set_neg_area2(Face,[Extens|L],New_Area,Units),!.

set_neg_area2(Face,L,Area,Units) :-
face(Extens,Face),
not(member(Extens,L)),
kind_of(Extens,door),
dimension(Extens,height,Ht,Htunits),
dimension(Extens,width, Wd, Wdunits),
convert(Ht,Htunits,New_Ht,Units),
convert(Wd,Wdunits,New_Wd,Units),

4 New_Area is (Area + (New_Ht * New_Wd)),

set_neg_area2(Face,[Extens/L],New_Area,Units),!.

set_neg_area2(Face,L,Area,Units):-
face(Extens,Face),
not(member(Extens,L)),

’ kind_of(Extens,connection),

geometry(Extens,rectangle),
dimension(Extens,height,Ht,Htunits),
{ dimension(Extens,width, Wd,Wdunits),
convert(Ht,Htunits,New_Ht,Units),
convert(Wd,Wdunits,New_Wd,Units),
New_Area is (Area + (New_Ht * New_Wd)),
set_neg area2(Face,[ExtensiL],New_Area,Units),!.

178

set_neg_area2(Face,L,Area,Units) :-
face(Extens,Face),
not(member(Extens,L)),
kind_of(Extens,connection),
geometry(Extens,square),
dimension(Extens,height, Ht,Htunits),
convert(Ht,Htunits,New_Ht,Units),
New_Area is (Area + (New_Ht * New_Ht)),
set_neg area2(Face,[Extens|L],New_Area,Units),!.

set_neg_area2(Face,L,Area,Units) :-
face(Extens,Face),
not(member(Extens,L)),
kind_of(Extens,connection),
geometry(Extens,square),
dimension(Extens, width, Wd, Wdunits),
convert(Wd,Wdunits,New_Wd,Units),
New_Area is (Area + (New_Wd * New_Wd)),
set_neg_area2(Face,[ExtensIL],New_Area,Units),!.

set_neg_area2(Face,L,Area,Units) :-
face(Extens,Face),
not(member(Extens,L)),
kind_of(Extens,connection),
geometry(Extens,circle),
dimension(Extens,radius,Rd,Rdunits),
convert(Rd,Rdunits,New_Rd,Units),
Piis 3.14159,
New_Area is (Area + (Pi * New_Rd * New_Rd)),
set_neg_area2(Face,[ExtensIL],New_Area,Units),!.

set_neg_area2(Face,L,Area,Units) :-
face(Extens,Face),
not(member(Extens,L)),
kind_of(Extens,opening),
geometry(Extens,rectangle),
dimension(Extens,height,Ht,Htunits),
dimension(Extens,width, Wd, Wdunits),
convert(Ht,Htunits,New_Ht,Units),
convert(Wd,Wdunits,New_Wd,Units),
New_Area is (Area + (New_Ht * New_Wd)),
set_neg_area2(Face,[Extens/L],New_Area,Units),!.

179

set_neg_area2(Face,L,Area,Units) :-
face(Extens,Face),
not(member(Extens,L)),
kind_of(Extens,opening),
geometry(Extens,square),
dimension(Extens,height, Ht,Htunits),
convert(Ht,Htunits,New_Ht,Units),
New_Area is (Area + (New_Ht * New_Ht)),
set_neg area2(Face,[Extens/L],New_Area,Units),!.

set_neg_area2(Face,L,Area,Units) :-
face(Extens,Face),
not(member(Extens,L)),
kind_of(Extens,opening),
geometry(Extens,square),
dimension(Extens,width, Wd, Wdunits),
convert(Wd,Wdunits,New_Wd,Units),
New_Area is (Area + (New_Wd * New_Wd)),
set_neg_area2(Face,[ExtensIL},New_Area,Units),!.

set_neg_area2(Face,L,Area,Units) :-
face(Extens,Face),
not(member(Extens,L.)),
kind_of(Extens,opening),
geometry(Extens,circle),
dimension(Extens,radius,Rd,Rdunits),
convert(Rd,Rdunits,New_Rd,Units),
Piis 3.14159,
New_Area is (Area + (Pi * New_Rd * New_Rd)),
set_neg_area2(Face,[ExtenslL],New_Area,Units),!.

set_neg_area2(Face,L,Area,Units) :-
assertz(get_neg_area(Face,Area,Units)).

get_area(Extens,Area,Units) :-
part_of(Extens,Face),
dimension(Extens,height,Ht,Htunits),
dimension(Extens,width, Wd, Wdunits),
get_neg_area(Face,Neg_Area,Units),
convert(Ht,Htunits, New_Ht,Units),
convert(Wd,Wdunits,New_Wd,Units),
Area is (New_Ht * New_Wd) - Neg_Area),!.

180

get_area(Extens,Area,Units) :-
part_of(Extens,Face),
dimension(Face,height,Ht,Htunits),
dimension(Face,width,Wd,Wdunits),
get_neg_area(Face Neg_Area,Units),
convert(Ht,Htunits, New_Ht,Units),
convert{Wd,Wdunits,New_Wd,Units),
Area is (New_Ht * New_Wd) - Neg_Area),!.

get_area(Extens,Area,Units) :-
part_of(Extens,Face),
dimension(Face,height,Ht,Htunits),
dimension(Extens,width, Wd, Wdunits),
get_neg_area(Face,Neg_Area,Units),
convert(Ht,Htunits,New_Ht,Units),
convert(Wd,Wdunits,New_Wd,Units),
Area is (New_Ht * New_Wd) - Neg_Area),!.

get_area(Extens,Area,Units) :-
part_of(Extens,Face),
dimension(Extens,height,Ht,Htunits),
dimension(Face,width,Wd,Wdunits),
get_neg_area(Face,Neg_Area,Units),
convert(Ht,Htunits, New_Ht,Units),
convert(Wd,Wdunits,New_Wd,Units),
Area is ((New_Ht * New_Wd) - Neg_Area),!.

materials_report :-
assertz(mat_cost(0)),
nl,nl,nl, write(’ Raw Materials Report’),nl,nl,
write(" Item Cost Units Required’),nl,nl,
material_list(Material,Num_Units,Item_Cost),
New_Cost is floor(Item_Cost),
print_mat_report(Material, Num_Units,New_Cost),
update_mat_cost(New_Cost),fail.

181

N

- ———— —w — -

materials_report :-

mat_cost(Total),nl,nl,
wﬁte(’##********t#***********************'),nl'

write(’* *).nl,
write(’ Total material cost is $’),
write(Total),nl,

write(’* *).nl,

WTitC(,***********************************’),nl,nl,nl

fail.

R

update_mat_cost(Item_Cost) :-

retract(mat_cost(Total)),
New_Total is (Total + Item_Cost),
assertz(mat_cost(New_Total)),!.

print_mat_report(Material, Num_Units,Tot_Cost) :-

write(Material),
name(Material, L1),
length(L1,N1),

tab(17 - N1),
write(’$’),write(Tot_Cost),
name(Tot_Cost,L2),
length(L2,N2),

tab(15 - N2),
write(Num_Units),nl,nl,!.

report_subst :-

nl,nl,nl,
write(’ Start Raw Materials Report (w/ substitute)’),
nl,nl,nl fail.

report_subst :-

substitute(Extens,Subst_Mat),
replace_data(Extens,Subst_Mat),
not(raw_materials_needed),
not(materials_report),
restore_data,fail.

replace_data(Extens,Subst_Mat) :-

retract(mat_cost(_)),
retract(material_list(_, ,_)).fail.

182

l . N —

——

g

““‘—W

pony

replace_data(Extens,Subst_Mat) :-

retract(substitute(Extens,Subst_Mat)),
retract(property(Extens,material_type,Material)),

wﬁte(' e 3 2o ae e afe e aje afe 3¢ e 2 e 2 3k 20k 3 2 e 2k e ke Sk 2 ke ok 36 ok afe e 2 3 ok ke Ak afe e 35 3k 2 3 e 3k ak Ak e ok ke ak 3k o 2k o Ak ok 2)’nl,
write(** **),nl,

write(’ ’),write(Extens),write(’: substitute ’),

write(Subst_Mat),write(’ for ’),write(Material),nl,

write(’* *).nl,
writc(’t**#*#**t******t*#**t*****#**t**********#*******#***** ’)’nl’nl
assertz(property(Extens,material_type,Subst_Mat)),
assertz(temp(Extens,material_type,Material)),!.

2

restore_data :-

retract(temp(Extens,material _type,Material)),
retract(property(Extens,material_type,_)),
assertz(property(Extens,material_type,Material)),!.

183

r——————_—-——.——.’\.‘ -

B. STANDARDS DATA

minimum(door,doorl,width,32,inches).
minimum(door,door],height,6,feet).

3 maximum(door,door1,width,4,feet).
maximum(door,door],height,7 feet).
S minimum(door,_,depth,2,inches).

maximum(door,_,depth,3,inches).
minimum(pane,_,quality,3).

comment(masonry,’approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit’).
] comment_for(cover,brick,masonry).
comment_for(cover,concrete_block,masonry).
3 comment_for(sub_cover,brick,masonry).
& comment_for(sub_cover,concrete_block,masonry).

comment(framing,’ grade marks must be clearly visible on all framing members for
inspection’).
comment_for(frame,wood,framing).

k check_for(sub_cover,tar_paper,[tar_paper],tar_paper2.tar_paper3]).

184

“—--------—--—-'-“-j <

W,

i

C. ASSEMBLY RULES

/* start with information on face normals */

assemble(H,house) :-
assertz(operation(comment,’normal for each face listed’, _,_)),
assertz(operation('FACE’,’X",’Y’,’Z")),
assertz(operation(’ YR)
kind_of(Face,face),
normal_X(Face,X),
normal_Y(Face,Y),
normal_Z(Face,Z),
assertz(operation(Face X,Y,Z)).

/* start with frame */

assemble(H,house) :-
assertz(operation(comment, erect foundation and frame’,_,)).

/* do foundation frame */

assemble(H,house) :-
kind_of(Yface,face),
trans_partof(Yface,H),
normal_Z(Yface,1),
contains(Yface,L),
member(Frame,L),
kind_of(Frame,frame),
property(Frame,material_type,Mtype),
assertz(operation(Frame,assemble, 'material type: ’,Mtype)).

/* do frame perpendicular to ground */

assemble(H,house) :-
kind_of(Yface, face),
trans_partof(Yface,H),
normal_Y(Yface,0),
normal_2Z(Yface,0),
contains(Yface,L),
member(Frame,L),
kind_of(Frame,frame),
property(Frame,material_type,Mtype),
assertz(operation(Frame,assemble, ’material type: ’, Mtype)).

185

N

assemble(H,house) :-
kind_of(Yface face),
trans_partof(Yface,H),
normal_X(Yface,0),
normal_Z(Yface,0),
contains(Yface,L),
member(Frame,L),
kind_of(Frame, frame),
property(Frame,material_type,Mtype),
assertz(operation(Frame,assemble, material type: ’,Mtype)).

' /* ceiling frame */
assemble(H,house) :-
kind_of(Yface,face),
trans_partof (Yface,H),
normal_Z(Yface,-1),
contains(Yface,L),
member(Frame,L),
P kind_of(Frame, frame),

. .

property(Frame,material_type,Mtype),
assertz(operation(Frame,assemble, ’material type: ’,Mtype)).

-

/* roof frame */

assemble(H,house) :-
kind_of(Roof,roof),
trans_partof(Roof,H),
kind_of(Yface face),
trans_partof(Yface,Roof),
contains(Yface,L),
member(Frame,L),
kind_of(Frame,frame),
property(Frame,material_type,Mtype),
assertz(operation(Frame,assemble, 'material type: ', Mtype)).

/* now put doors in place */

assemble(H,house) :-
assertz(operation(comment, put door framing in place’,_,_)).

186

Y e

v -~y -

assemble(H,house) :-

kind_of(Door,door),

trans_partof(Door H),

property(Door,material _type,Mtype),
assertz(operation(Door,assemble, 'material type: *,Mtype)),
get_faces(Door,Facel,Face2),
assertz(operation(’’,’ - attach to:’ ,Face1l,Face2)),
part_of(Door,Face3),

assertz(operation(’’,’- location’,’relative to’,Face3)),
coordinates_X (local,Door,X,Units_X),
coordinates_Y (local,Door,Y,Units_Y),
coordinates_Z(local,Door,Z,Units_Z),
assertz(operation(’’,” X coordinate’, X,Units_X)),
assertz(operation(’’,” Y coordinate’,Y,Units_Y)),
assertz(operation(’’,” Z coordinate’,Z,Units_Z)).

/* put window sills in place */
assemble(H,house) :-

assertz(operation(comment,’put window framing in place’,_,_)).

assemble(H,house) :-

kind_of(W,window),

trans_partof(W,H),

contains(W,L),

member(Sill,L),

kind_of(Sill,sill),
assertz(operation(Sill,assemble,’ window sill for: *,W)),
get_faces(W Facel,Face2),

assertz(operation(’’,’- attach to: ’,Facel,Face2)),
part_of(W,Face3),

assertz(operation(’’,’- location’, relative to’,Face3)),
coordinates_X(local,W,X,Units_X),

coordinates_Y (local,W,Y,Units_Y),
coordinates_Z(local, W,Z,Units_Z),
assertz(operation(’’,’ X coordinate’,X,Units_X)),
assertz(operation(’’,” Y coordinate’,Y,Units_Y)),
assertz(operation(’’,” Z coordinate’,Z,Units_Z)).

/* put up exterior siding */
assemble(H, house) :-

assertz(operation(comment,’put up exterior siding’,_,_)).

187

assemble(H,house) :-
kind_of(E,exterior),
trans_partof (E,H),
contains(E,L),
assemble(L,face).

/* put up roof */
assemble(H,house) :-
assertz(operation(comment,’put up roof’,_,_)).

assemble(H,house) :-
kind_of(R,roof),
trans_partof (R, H),
contains(R,L),
assemble(L,face).

/* put up faces for each room */

assemble(H,house) :-
assertz(operation(comment,’put up faces for each room’,_,_)).

assemble(H,house) :-
kind_of(R,room),
trans_partof (R, H),
contains(R,L),
assemble(L,face).

/* put up windows */

assemble(H,house) :-
assertz(operation(comment, ’put windows in place’,_,)).

assemble(H,house) :-
kind _of(W,window),
trans_partof(W,H),
contains(W,L),
member(P,L),
kind_of(P,pane),
member(C,L),
kind_of(C,case),
assertz(operation(W,’complete using’,P,C)).

188

/* take care of finish on windows and doors */

assemble(H,house) :-
assertz(operation(comment,’put finish on windows and doors’,_,_)).

assemble(H,house) :-
finish,

/* take care of door knobs and hinges */

assemble(H,house) :-
assertz(operation(comment,’put on door knobs and hinges’,_,)).

assemble(H,house) :-
kind_of(D,door),
trans_partof(D,H),
assemble(D,door).

/* take care of paint on faces */

assemble(H,house) :-
assertz(operation(comment,’put final paint on faces’,_,_)).

assemble(H,house) :-
kind_of(R,roof),
trans_partof(R,H),
contains(R,L),
paint_face(L).

assemble(H,house) :-
kind_of(E,exterior),
trans_partof(E,H),
contains(E,L),
paint_face(L).

assemble(H,house) :-
kind_of(R,room),
trans_partof(R,H),
contains(R,L),
paint_face(L).

189

L 2

/* routines to put up sub_covers and covers for a given */
/* list of faces supplied as first argument; these routines */
/* look for common materials to help set priority; all */
/* sub_covers are handled prior to covers; */

/* covers which are paint are left to be performed ata */
/* later time; all sub_covers and covers */

/* associated with the floor are performed last */

assemble(L,face) :-
assemblel(L,[).face).

assemble(L.face) :-
member(Face,L),
normal_Z(Face,1),
assertz(operation(comment,’build floor as last step’,_,_)),
contains(Face,L1),
assemble2([L.1],[L.1].face).

assemblel(L,L1 face) :-
member(Face,L),
not(normal_Z(Face,1)),
delete(Face,L,L2),
contains(Face,L3),
assemble1(L2,[L3IL1],face),!.

assemblel(L,L.1,face) :-
assemble2(L1,L1 face),!.

assemble2(Full_L,L,face) :-
member(Face,L),
delete(Face,L,L1),
member(Item,Face),
kind_of(Item,sub_cover),
property(Item,material_type,Mtype),
operation(Y,_,_,Mtype),
member(Facel,Full_L),
member(Y ,Facel),
assertz(operation(Item,assemble, ' material type: *,Mtype)),
delete(Item,Face, Face2),
assemble2(Full_L,[Face2IL1} face),!.

190

assemble2(Full_L,L. face) :-
member(Face,L),
delete(Face,L,L1),
member(Item,Face),
kind_of(Item,sub_cover),
property(Item,material_type,Mtype),
assertz(operation(Item,assemble, ’material type: ’,Mtype)),
delete(Item,Face,Facel),
assemble2(Full_L,[FacellL1],face),!.

assemble2(Full_L,L.face) :-
member(Face,L),
delete(Face,L,L1),
member(Item,Face),
kind_of(Item,cover),
property(Item,material_type,Mtype),
not(liquid(Mtype,paint,_,_,_,_,_)),
operation(Y,_,_,Mtype),
member(Facel,Full_L),
member(Y ,Facel),
assertz(operation(Item,assemble, material type: ’,Mtype)),
delete(Item,Face, Face2),
assemble2(Full_L,[Face2IL1],face),!.

assemble2(Full_L,L.face) :-
member(Face,L),
delete(Face,L,L1),
member(Item,Face),
kind_of(Item,cover),
property(Item,material_type,Mtype),
not(liquid(Mtype,paint,_,_,_,_,_)),
assertz(operation(Item,assemble, ’material type: ’,Mtype)),
delete(Item,Face Facel),
assemble2(Full_L,[FacellL.1],face),!.

assemble2(Full_L,L,face).

/* take care of finishes */
finish :-

property(F finish_type,Ftype),
property(F finish_color,Fcolor),
assertz(operation(F,finish,Ftype,Fcolor)).

191

| e L

/* assemble door knob */

assemble(D,door) :-
property(D knob_type,Ktype),
assertz(operation(D,assemble, knob,Ktype)).

/* assemble door hinges */

assemble(D,door) :-
property(D,hinge_type,Htype),
assertz(operation(D,assemble,hinge Htype)).

/* routines to apply paint to faces; acts on covers only */

paint_face(L) :-
member(Face,L),
normal_Z(Face,-1),
contains(Face,L.1),
member(Cover,L1),
kind_of(Cover,cover),
property(Cover,material_type, Mtype),
liquid(Mtype,paint,_,_,_,_,_),
assertz(operation(Cover,paint,’material type: ’,Mtype)),
delete(Face,L,L2),
paint_face(L2),!.

paint_face(L) :-
member(Face,L),
normal_Y (Face,0),
normal_Z(Face,0),
contains(Face,L1),
member(Cover,L1),
kind_of(Cover,cover),
property(Cover,material_type , Mtype),
liquid(Mtype,paint,_, ,_,_,),
assertz(operation(Cover,paint,’'material type: ’,Mtype)),
delete(Face,L.,L2),
paint_face(L2),!.

192

paint_face(L) :-
member(Face,L),
normal_X(Face,0),
normal_Z(Face,0),
contains(Face,L1),
member(Cover,L.1),
kind_of(Cover,cover),
property(Cover,material_type,Mtype),
liquid(Mtype,paint, _,_,_,_,_),
assertz(operation(Cover,paint,’material type: ’,Mtype)),
delete(Face,L,1.2),
paint_face(L2),!.

paint_face(L) :-
member(Face,L),
normal_Z(Face,-1),
contains(Face,L.1),
member(Cover,L1),
kind_of(Cover,cover),
property(Cover,material_type,Mtype),
liquid(Mtype,paint, _,_,_,_,_),
assertz(operation(Cover,paint,”material type: ’,Mtype)),
delete(Face,L.,L.2),
paint_face(L2),!.

paint_face(L) :-
member(Face,L),
contains(Face,L.1),
member(Cover,L1),
kind_of(Cover,cover),
property(Cover,material _type,Mtype),
liquid(Mtype,paint, _,_,_,_,_),
assertz(operation(Cover,paint, material type: ’,Mtype)),
delete(Face,L,L.2),
paint_face(L2),!.

paint_face(L).

193

m

/* routine to get the two faces which an item is associated with */

get_faces(Item,Facel,Face2) :-
face(Item,Facel),
face(Item,Face2),
not(Facel = Face2),!.

194

D. BILL OF MATERIALS RULES

/* materials for doors */

raw_materials_needed :-
kind_uf(Extens,door),
material(Extens, ,_, ,_,_»_+_s_s_»_s_rCOSt),
add_material(Extens,1,Cost),fail.

raw_materials_nceded :-
kind_of(Extens,door),
property(Extens,finish_type,Paint),
liquid(Paint,_,Area_Cov,Area_Units, ,_,Cost),
dimension(Extens,height,Org_Ht,Ht_Units),
dimension(Extens,width,Org_Wd,Wd_Units),
dimension(Extens,depth,Org_Dp,Dp_Units),
convert(Org_Ht,Ht_Units,New_Ht,Area_Units),
convert(Org_Wd,Wd_Units,New_Wd,Area_Units),
convert(Org_Dp,Dp_Units,New_Dp,Area_Units),
Areais ((2 * New_Ht * New_Wd) + (2 * New_Ht * New_Dp) +
(2 * New_Wd * New_Dp)),
Num_Units is (Area / Area_Cov),
Tot_Cost is (Num_Units * Cost),
add_material(Paint, Num_Units, Tot_Cost),fail.

/* materials for windows */

raw_materials_needed :-
kind_of(Extens,window),
material(EXtens, _,_,_, . v s s s s_s_s Cost),
add_material(Extens, 1,Cost),fail.

195

—

?————-————-———ﬁ < —

raw_materials_needed :-

kind_of(Window,window),

part_of(Extens,Window),

kind_of(Extens,sill),
property(Extens,finish_type,Paint),
liquid(Paint,_,Area_Cov,Area_Units,_,_,Cost),
convert(Area_Cov,Area_Units,New_Area,feet),
New_Area2 is (New_Area * New_Area) / Area_Cov),
dimension(Window,height,Org_Ht,Ht_Units),
dimension(Window,width,Org_Wd,Wd_Units),
part_of(Window,Face),
dimension(Face,depth,Org_Dp,Dp_Units),
convert(Org_Ht,Ht_Units,New_Ht,Area_Units),
convert(Org_Wd,Wd_Units,New_Wd,Area_Units),
convert(Org_Dp,Dp_Units,New_Dp,Area_Units),
Area is ((2 * New_Ht * New_Dp) + (2 * New_Wd * New_Dp)),
Num_Units is (Area / Area_Cov),

Tot_Cost is (Num_Units * Cost),

add_material(Paint, Num_Units, Tot_Cost),fail.

/* materials for frames; assumes 1 square foot of area */
/* requires a 1 foot length of frame wood */
raw_materials_needed :-

kind_of(Extens,frame),

dimension(Extens,height,Height,Ht_Units),
dimension(Extens,width, Width, Wd_Units),
convert(Height, Ht_Units, New_Height,feet),

convert(Width,Wd_Units, New_Width, feet),
property(Extens,material_type,Material),

material(Material, wood,Ht,Htunits, Wd, Wdunits,Dp,Dpunits,_,_,_,_,Cost),
longest_dimension(Ht,Htunits, Wd,Wdunits,Dp,Dpunits,Len,Lenunits),
convert(Len,Lenunits,New_Len,feet),

Area is (New_Height * New_Width),

Num_Units is (Area / New_Len),

Tot_Cost is (Num_Units * Cost),

add_material(Material, Num_Units,Tot_Cost),fail.

196

raw_materials_needed :~

kind_of(Extens,frame),

not(dimension(Extens,width,_,_)),

not(dimension(Extens,height, ,)),
property(Extens,material_type,Material),
material(Material,wood, Ht, Htunits, Wd, Wdunits,Dp,Dpunits,_,_,_,_,Cost),
get_area(Extens,Area,Units),

convert(Area,Units,New_Area feet),

New_Area2 is ((New_Area * New_Area) / Area),
longest_dimension(Ht,Htunits, Wd,Wdunits, Dp,Dpunits,Len,Lenunits),
convert(Len,Lenunits, New_Len feet),

Num_Units is (Area / Len),

Tot_Cost is (Num_Units * Cost),
add_material(Material, Num_Units, Tot_Cost),fail.

raw_materials needed :-

normal_Z(Face,-1),

part_of(Extens,Face),

kind_of(Extens,frame),
property(Extens,material_type,Material),
material(Material,wood,Ht,Htunits, Wd, Wdunits,Dp,Dpunits,_,_,_,_,Cost),
longest_dimension(Ht,Htunits, Wd,Wdunits,Dp,Dpunits,Len,Lenunits),
convert(Len,Lenunits,New_Len,feet),

kind_of(Roof roof),

part_of(Face2,Roof),

kind_of(Face2,face),

part_of(Extens2,Face2),

kind_of(Extens2,frame),

normal_Z(Face2,CosZ),

dimension(Extens2,height, Ht_face,Ht_face_units),
convert(Ht_face, Ht_face_units,New_Hit_face feet),
dimension(Extens2,width, Wd_face, Wd_face_units),
convert(Wd_face,Wd_face_units,New_Wd_face, feet),

SinZ is (sqrt(1 - (CosZ * CosZ))),

Area is (SinZ * New_Ht_face * New_Wd_face),

Area2 is (SinZ * New_Ht_face * CosZ * New_Ht_face * 2),
Tot_Area is Area + Area2,

Num_Units is (Tot_Area / New_Len),

Tot_Cost is (Num_Units * Cost),

add_material(Material, Num_Units,Tot_Cost),fail.

197

raw_materials_needed :-
normal_Z(Face,-1),
part_of(Extens,Face),
kind_of(Extens,frame),
property(Extens,material_type,Material),
material(Material, wood,Ht Htunits, Wd,Wdunits,Dp,Dpunits, ,_,_,_,Cost),
longest_dimension(Ht,Htunits,Wd,Wdunits,Dp,Dpunits,Len,Lenunits),
convert(Len,Lenunits, New_Len, feet),
kind_of(Roof,roof),
part_of(Face2,Roof),
kind_of(Face2.face),
part_of(Extens2,Face2),
kind_of(Extens2,frame),
normal_Z(Face2,CosZ),
not(dimension(Extens2,height,_,)),
dimension(Face2,height Ht_face,Ht_face_units),
convert(Ht_face,Ht_face_units,New_Ht_face, feet),
dimension(Face2,width, Wd_face,Wd_face_units),
convert(Wd_face,Wd_face_units,New_Wd_face feet),
SinZ is (sqrt(1 - (CosZ * CosZ))),
Area is (SinZ * New_Ht_face * New_Wd_face),
Area2 is (SinZ * New_Ht_face * CosZ * New_Wd_face),
Tot_Area is Area + Area,
Num_Units is (Tot_Area / New_Len),
Tot_Cost is (Num_Units * Cost),
add_material(Material, Num_Units,Tot_Cost),fail.

/* frame material of type "filler" */

raw_materials_needed :-
kind_of(Extens,frame),
property(Extens,material_type , Material),
filler(Material,_,Vol,Volunits,_,_,Cost),
get_area(Extens,Area,Units),
convert(Vol,Volunits,New_Vol,Units),
New_Vol2 is (New_Vol * New_Vol * New_Vol)/(Vol * Vol)),
dimension(Extens,depth,Dp,Dpunits),
convert(Dp,Dpunits New_Dp,Units),
Num_Units is (Area * New_Dp / New_Vol2),
Tot_Cost is (Num_Units * Cost),
add_material(Material, Num_Units,Tot_Cost),fail.

198

raw_materials_needed :-
kind_of(Extens,sub_cover),
dimension(Extens,depth,Th,Thunits),
property(Extens,material_type Material),
material(Material, Ht,Htunits, Wd,Wdunits,Dp,Dpunits,_,_, ,_,Cost),
match(Ht,Htunits,Wd, Wdunits,Dp,Dpunits,Th,Thunits,Act,Ht,Units1,Act_Wd,Units2),
get_arca(Extens,Area,Units),
convert(Act_Ht,Units1,Act_Ht2,Units),
convert(Act_Wd,Units2,Act_Wd2,Units),
Num_Units is (Area / (Act_Ht2 * Act_Wd2)),
Tot_Cost is (Num_Units * Cost),
add_material(Material,Num_Units,Tot_Cost),fail.

raw_materials_needed :-
kind_of(Extens,sub_cover),
not(dimension(Extens,depth,Th, Thunits)),
property(Extens,material_type,Material),
material(Material,_,Ht,Htunits, Wd,Wdunits,Dp,Dpunits,_,_,_,_,Cost),
get_area(Extens,Area,Units),
convert(Ht,Htunits, New_Ht,Units),
convert(Wd,Wdunits,New_Wd,Units),
Num_Units is (Area / New_Ht * New_Wd)),
Tot_Cost is (Num_Units * Cost),
add_material(Material, Num_Units,Tot_Cost),fail.

raw_materials_needed :-
i kind_of(Extens,sub_cover),
property(Extens,material_type,Paint),
liquid(Paint,_,Area_Cov,Area_Units,_,_,Cost),
get_arca(Extens,Area,Units),
convert(Area_Cov,Area_Units,New_Area,Units),
New_Area2 is (New_Area * New_Area) / Area_Cov),
Num_Units is (Area / New_Area2),
Tot_Cost is (Num_Units * Cost),
add_material(Paint,Num_Units, Tot_Cost),fail.

199

b o m——n -

.

raw_materials_needed :-

kind_of(Extens,cover),

dimension(Extens,depth,Th,Thunits),
property(Extens,material_type,Material),
material(Material,_,Ht, Htunits, Wd, Wdunits,Dp,Dpunits, _,_,_,_,Cost),
match(Ht,Htunits, Wd, Wdunits,Dp,Dpunits,Th,Thunits,Act_Ht,Units 1,Act_Wd,Units2),
get_area(Extens,Area,Units),

convert(Act_Ht,inches,Act_Ht2,Units),
convert(Act_Wd,inches,Act_Wd2,Units),

Num_Units is (Area / (Act_Ht2 * Act_Wd2)),

Tot_Cost is (Num_Units * Cost),
add_material(Material, Num_Units, Tot_Cost),fail.

raw_materials_needed :-

kind_of(Extens,cover),
not(dimension(Extens,depth, Th, Thunits)),
property(Extens,material_type,Material),
material(Material, ,Ht,Htunits, Wd, Wdunits,Dp,Dpunits
get_area(Extens,Area,Units),
convert(Ht,Htunits, New_Ht, Units),
convert(Wd,Wdunits,New_Wd,Units),

Num_Units is (Area / (New_Ht * New_Wd)),

Tot_Cost is (Num_Units * Cost),
add_material(Material, Num_Units, Tot_Cost),fail.

Cost),

L A a1

raw_materials_needed :-

kind_of(Extens,cover),
property(Extens,material_type,Paint),
liquid(Paint,_,Area_Cov,Area_Units,_,_,Cost),
get_area(Extens,Area,Units),
convert(Area_Cov,Area_Units,New_Area,Units),
New_Area2 is (New_Area * New_Area) / Area_Cov),
Num_Units is (Area / New_Area2),

Tot_Cost is (Num_Units * Cost),

add _material(Paint,Num_Units, Tot_Cost),fail.

add_material(Material, Num_Units, Tot_Cost) :-

retract(material_list(Material,Old_Num_Units,Old_Cost)),
New_Num_Units is (Old_Num_Units + Num_Units),
New_Cost is (Old_Cost + Tot_Cost),
assertz(material_list(Material, New_Num_Units,New_Cost)),!.

add_material(Material, Num_Units,Tot_Cost) :-
assertz(material_list(Material, Num_Units,Tot_Cost)),!.

/* material data */
material(shingle12,shingle,12,inches,6,inches,0.25,inches,0,feet,0,feet,1.25).
material(tar_paper2,tar_paper,72,inches,240,inches,0.25,inches,0,feet,0,fzet,125.00).
material(tar_paperl tar_paper,72,inches,240,inches,0.25,inches,0,feet,0,feet,150.00).
material(tar_paper3,tar_paper,72,inches,240,inches,0.25,inches,0,feet,0,feet,110.00).
material(sheath_paper24,sheath_paper,12,feet,100,feet,0.1,inches,0,feet,0,feet,75.65).
material(wood8,wood, 144 inches,4,inches,2,inches,0,feet,0,feet,8.25).
material(hard_wood9,hard_wood,4,inch,24 feet,0.5,inch,0,feet,0,feet, 12.00).
material(hardboard32,hardboard, 36,feet, 10,feet, 1,inches,0,feet,0,feet,136.55).
material(hardboard78,hardboard,36,feet,24 feet,1,inch,0,feet,0,feet,289.00).
material(hardboard34,hardboard,24 feet, 10,feet, 1,inches,0,feet,0,feet,95.35).

/* use brick 10x4x6 effective size */
material(brick88,brick,10,inches,4,inches,6,inches, 0,feet,0,feet,1.15).

liquid(paint9,paint,900,feet,1,gallon,8.00).
liquid(paint21,paint,700,feet,1,gallon,13.55).
liquid(paint17,paint,1100,feet,1,gallon,8.25).

/* 10 1b per 2 cubic feet */
filler(concrete1,concrete,2 feet,10,15,5.00).

material(door?, . ,_, .., ,0.feet,0,feet,16.00).

material(windowl, ,_, , ., . ,0.feet,0feet,30.50).

201

E. DESIGN DATA

/***#‘#tt*#**‘*.tt*t*#t*tt##.**t******#*t*****t*t#/

/* house data */

kind_of(housel,house).

property(house1,subtype,single_room).
contains(house1,[roof1,exteriorl,rooml]).

/#.#.t#tt‘.“.t.tttt##‘tt‘t#.tt‘#‘#ittt#‘#t‘#**‘t#/

/* exterior data */

kind_of(exteriorl,exterior).

contains(exterior1,[face5,face6,face7 face8]).
part_of(exterior1,housel).

/‘##*#**#tt##.‘t#*t‘t#*##*t**##‘**t*#****###**##*#/

/* roof data */

kind_of(roof1,roof).

contains(roof1,[facel 1,facel2]).
part_of(roof1,housel).

/t*tt*‘*t##**#*t#****##*#**t***tt*#t*t#*t#********/

202

kind_of(facel1,face).

dimension(facel1,height,151.5,inches).
dimension(face11,width,384,inches).
dimension(face11,depth,6.5,inches).

contains(face11,[framel,sub_cover2,sub_coverl,cover1]).
normal_X(face11,0).

normal_Y (facel11,0.34).

normal_Z(facel1,0.94).

part_of(facel1,roof1).

I* */

kind_of(framel,frame).

property(frame 1, material_type,wood8).
dimension(frame 1 height,139.5,inches).
dimension(frame 1,width,382,inches).
dimension(frame1,depth,4,inches).
face(framel,facell).
part_of(frame1,facel1).

[* */

kind_of(sub_cover2,sub_cover).
property(sub_cover2,material_type,wood8).
dimension(sub_cover2,depth,2,inches).
part_of(sub_cover2,facell).

/* */

kind_of(sub_coverl,sub_cover).
property(sub_coverl,material_type,tar_paper2).
dimension(sub_coverl,depth,0.25,inches).
part_of(sub_coverl facell).

/* */

kind_of(coverl,cover).

property(coverl,material_type,shingle12).
property(coverl,finish_color,brown).

dimension(coverl,depth,0.25,inches).

part_of(coverl,facell).

/t*t##t*t##*##t.#‘****.t*t*t****#t************tt#t/

kind_of(facel2,face).

dimension(face12,height,151.5,inches).
dimension(face12,width,384,inches).
dimension(face12,depth,6.5,inches).

contains(face12,[frame2,sub_coverl3,sub_coverl4,coverl2)).
normal_X(face12,0).

normal_Y(face12,-0.34).

normal_Z(face12,0.94).

part_of(facel2,roof1).

/* */

204

kind_of(frame2,frame).
property(frame2,material_type,wood8).
dimension(frame2,height,139.5,inches).
dimension(frame2,width,382,inches).
dimension(frame2,depth,4,inches).
face(frame2,facel2).
part_of(frame2,facel2).

* */

kind_of(sub_coverl3,sub_cover).
property(sub_cover13,material_type,wood8).
dimension(sub_cover13,depth,2,inches).

part_of(sub_coverl3,facel2).

/* */
kind_of(sub_coverl4,sub_cover).
property(sub_cover14,material _type,tar_paper2).
dimension(sub_cover14,depth,0.25,inches).

part_of(sub_cover14,facel2).

/* */

kind_of(coverl2,cover).

property(cover12,material_type,shingle12).
property(cover12,finish_color,brown).

dimension(cover12,depth,0.25,inches).

part_of(cover12,facel2).

/‘#**.*t*tttt*t*#***#*t#‘**##*****tt*****t********/

/* room1 */
kind_of(room1,room).

coordinates_X(product,room1,0,inches).

coordinates_Y (product,room1,0,inches).
coordinates_Z(product,room1,12,inches).
contains(room1,[facel,face2,face3,face4,face9,face10]).
part_of(room1,housel).

/‘t‘tt#*t#*t#.#t*‘###**#***t****#*************t#**/

/* facel */
kind_of(facel face).

dimension(facel,height,115,inches).
dimension(facel,width,362,inches).
dimension(face1,depth,1,inches).

contains(face1,[sub_cover3,cover2]).
normal_X(facel,0).
normal_Y(facel,-1).
normal_Z(facel,0).
part_of(facel,room1).

I* */

206

kind_of(sub_cover3 ,sub_cover).
pmperty(sub_cover3,matcﬁal_type,hardboardSZ).
dixnension(sub_covcr3.dcpth,l,inches).
part_of(sub_cover3,facc1).

[— eeemaanane »/

kind_of(cover2,cover).

property(cover2,matcﬁal_typc,paint9).
property(covch,ﬁnjsh_color,ycllow).

part_of(coverZ,facel)‘

/*t******#*t*#*********t*#**#**#******************/

/* face2 */

kind_of(face2,face).

dimension(face2,height,11 S,inches).
dimcnsion(face2,width,240,inchcs)‘
dimension(fach,dcpm,l,inches).

contains(facez,[sub_,covcr4,cover3]).
normal_X(face2,-1).

normal_Y (face2,0).
normal_Z(face2,0).
part_of(face2,room1).

[#eemeomacesnmasamassaanmmunnesnsnnnanssosnaaaaes */

kind_of(sub_cover4,sub_cover).

property(sub_cover4,material_type,hardboard34).

A dimension(sub_cover4,depth, 1,inches).
e part_of(sub_cover4 face2).
/* */

kind_of(cover3,cover).

property(cover3,material_type,paint9).
property(cover3,finish_color,yellow).

part_of(cover3,face2).

/****#**tt****#*****#****************#************/

/* face3 */

kind_of(face3,face).

dimension(face3,height,115,inches).
dimension(face3,width,362,inches).
dimension(face3,depth,1,inches).

contains(face3,[sub_cover5,coverd]).
normal_X(face3,0).
normal_Y(face3,1).
normal_Z(face3,0).
part_of(face3,room1).

I* -e- */

208

W—————f L — ~——

kind_of(sub_cover5,sub_cover).
property(sub_cover5,material_type,hardboard32).
dimension(sub_cover5,depth, 1,inches).

part_of(sub_cover5,face3).

i /* *f

kind_of(coverd,cover).

property(cover4,material_type,paint9).
property(cover4,finish_color,yellow).

part_of(cover4,face3).

/*tt*******#t*#*t*t******************#*****#******/

/* faced4 */

kind_of(face4,face).

dimension(face4,height,115,inches).
dimension(face4,width,240,inches).
dimension(face4,depth, 1,inches).

contains(face4,[sub_cover6,covers]).
normal_X(face4,1).
normal_Y(face4,0).
normal_Z(faced4,0).
part_of(faced,room1).

P

I* */

209

kind_of(sub_cover6,sub_cover).

property(sub_cover6,material_type,hardboard34).
dimension(sub_cover6,depth, 1,inches).
part_of(sub_cover6,face4).

* */

kind_of(cover5,cover).

property(cover5,material _type,paint9).
property(cover$,finish_color,yellow).

part_of(cover5,faced).

/tt*#t#**#ttt*t*****tt*t#**t#*****‘*#*****/

/* faceS */
/* use brick 10x4x6 effective size */

kind_of(face5,face).

dimension(face5,height,120,inches).
dimension(face5,width,382,inches).
dimension(face5,depth,6,inches).

contains(face$5,[frame3,sub_cover7,cover6]).
normal_X(face$5,0).

normal_Y(face5,1).

normal_Z(face5,0).

part_of(face5,exteriorl).

/ﬁ t/

210

kind_of(frame3,frame).
property(frame3,material_type,wood8).
dimension(frame3,depth,4,inches).

face(frame3,faceS5).
face(frame3,facel).

part_of(frame3,faceS).
* .

kind_of(sub_cover7,sub_cover).

property(sub_cover7,material_type,sheath_paper24).

part_of(sub_cover7 face5).

I J

kind_of(cover6,cover).

property(cover6,material_type,brick88).
property(cover6,finish_color,red).

dimension(cover6,depth,6,inches).

part_of(cover6,face5).

211

3 e eam—n - n e

/.Ot*t#t‘*##**#***##****##*#tt#**tt*t****t*#*#*t**/

/* face6 */

kind_of(face6,face).

dimension(face6,height,120,inches).
dimension(face6,width,250,inches).
dimension(face6,depth,6,inches).

contains(face6,[frame4,sub_cover8,cover7,window1]).
normal_X(face6,1).

normal_Y (face6,0).

normal_Z(face6,0).

part_of(face6,exterior1).

/* */

kind_of(frame4 frame).
property(frame4,material _type,wood8).
dimension(frame4,depth,4,inches).

face(framed,face6).
face(framed4,face2).

part_of(frame4,face6).

* J

kind_of(sub_cover8,sub_cover).
property(sub_cover8,material_type,sheath_paper24).

part_of(sub_cover8,face6).

I J

212

kind_of(cover7,cover).

property(cover7,material_type,brick88).
property(cover7 finish_color,red).

dimension(cover7,depth,6,inches).
part_of(cover7, face6).

I* */

kind_of(window1,window).

dimension(window1,height,36,inches).
dimension(window1,width,48,inches).
dimension(window1,depth,0.5,inches).

contains(window1,[panel,silll casel]).
face(window1 face2).
face(window1,face6).
coordinates_X(local,window1,96,inches).
coordinates_Y (local,window1,0,inches).
coordinates_Z(local,window1,66,inches).
part_of(window1,face6).

/* */

kind_of(pane1,pane).
property(panel,quality.4).
part_of(panel,window1).

I* */

213

N5 T o W P s e 1 =

SO

kind_of(sill1,sill).

property(silll,finish_type,paint17).
property(sill1 finish_color,white).

part_of(silll,window1).

I* */

kind_of(casel,case).

part_of(casel,window1).

/**#*O*‘t.*#t*****##*#**t*#t#****#****#**** ***#**#/

/* face7 */

kind_of(face7 face).

dimension(face7,height,120,inches).
dimension(face7,width,382,inches).
dimension(face7,depth,6,inches).

contains(face7,[frame5,sub_cover9,cover8,doorl]).
normal_X(face7,0).

normal_Y(face7,-1).

normal_Z(face7,0).

part_of(face7,exteriorl).

/* */
kind_of(frameS5,frame).
property(frame5,material_type,wood8).
dimension(frame5,depth,4.inches).

face(frameS,face7).
face(frame5,face3).

part_of(frame5 face7).

214

/* */

kind_of(sub_cover9,sub_cover).

property(sub_cover9,material_type,sheath_paper24).

part_of(sub_cover9,face7).

* */

kind_of(cover8,cover).

property(cover8,material_type,brick88).
property(cover8,finish_color,red).

dimension(cover8,depth,6,inches).

part_of(cover8,face7).

/* */
kind_of(door1,door).

property(door1,material_type,woodS).
property(doorl finish_type,paint21).
property(door1 finish_color,brown).
property(door1 knob_type,round32).
property(doorl,hinge_type,square3in).

dimension(door1,height,84,inches).
dimension(door1,width,36,inches).
dimension(door1,depth,2.5,inches).

face(doorl,face3).

face(doorl face7).
coordinates_X(local,door1,125,inches).
coordinates_Y (local,door1,0,inches).
coordinates_Z(local,door1,42,inches).
part_of(door1,face7).

215

N

o TR P eripe e e A s

/““Ot.*t#t“tttttttt#*t**ttt**ttt*tttttt****t***/

/* face8 */
kind_of(face8,face).

dimension(face8,height,120,inches).
dimension(face8,width,250,inches).
dimension(face8,depth,6,inches).

contains(face8,[frame6,sub_cover10,cover9]).
normal_X(face8,-1).

normal_Y (face8,0).

normal_Z(face8,0).

part_of(face8,exteriorl).

* */
kind_of(frame6,frame).
property(frame6,material _type,wood8).
dimension(frame6,depth,4,inches).

face(frame6,face8).
face(frame6,faced).

part_of(frame6,face8).

/* */

kind_of(sub_cover10,sub_cover).
property(sub_cover10,material_type,sheath_paper24).
part_of(sub_cover10,face8).

I* */

216

m O~

kind_of(cover9,cover).

property(cover9,material_type,brick88).
property(cover9,finish_color,red).

part_of(cover9,face8).

/*#t.l#t.t“‘.tt#ttttttt‘t*tt**ttt#ttt*l*#********/

/* face9 */

kind_of(face9,face).

dimension(face9,height,20,feet).
dimension(face9,width,30,feet).
dimension(face9,depth, 1,inches).

contains(face9,[frame7,sub_coverl1,cover10]).
normal_X(face9,0).

normal_Y(face9,0).

normal_Z(face9,-1).

part_of(face9,room1).

I* */

kind_of(frame7 frame).
property(frame7,material_type,wood8).
face(frame7,face9).
part_of(frame7,face9).

/* */

217

LA it W CRTE———

kind_of(sub_coverl1,sub_cover).
property(sub_cover11,material_type,hardboard78).
dimension(sub_coverl1,depth,1,inches).
part_of(sub_cover11,face9).

/* */

kind_of(coverl0,cover).

property(cover10,material_type,paint17).
property(cover10,finish_color,white).

part_of(cover10,face9).

/*#.‘***l‘.lttt*#t#t**tt***#**#**t*****#**#*#***#*/

/* facel0 */

kind_of(facel0,face).

dimension(face10,height,382,inches).
dimension(face10,width,262,inches).
dimension(face10,depth,12.5,inches).

contains(face 10,[frame8,sub_cover12,cover11]).
normal_X(face10,0).

normal_Y (face10,0).

normal_Z(facel0,1).

part_of(face10,room1).

1* ./

218

m

kind_of(frame8,frame).
property(frame8,material_type,concretel).
dimcnsion(framcS,dcpth,lZ,inches).
face(frame8,face10).
part_of(frame8,face10).

/* */

kind_of(sub_coverl2,sub_cover).
property(sub_covcrlZ,material_type,hard_wood9).
dimension(sub_coverl2,hcight,20,feet).
dimension(sub_coverl2,width.30,fcct).

dimension(sub__coverl2,depth,0.5,inches).

part__of(sub_covcrlZ,face10).

/™ */
kind_of(cover!1,cover).

property(coverl 1,material_type,paint21).
property(cover11 finish_color, brown).

dimension(cover1l 1, height,20,feer).
dimension(coverl 1,width,30,feet).

part_of(coverl 1,face10).

219

N

F. SCHEMA DATA

part_of(house,floorplan).
part_of(house,exterior).
part_of(house,room).
part_of(house,roof).
part_of(house,space).

part_of(roof face).
part_of(room,face).
part_of(space,face).
part_of(exterior,face).

part_of(face,door).
part_of(face,window).
part_of(face,opening).
part_of(face,covering).
part_of{(face,sub_covering).
part_of(face,frame).
part_of(face,insulation).
part_of(face,connection).

part_of(connection,plumbing).
part_of(connection,electric).
part_of(connection,heating).
part_of(connection,gas).

part_of(window,sill).
part_of(window,case).
part_of(window,pane).

trans_partof(X,Y) :- part_of(X,Y),!.

trans_partof(X,Y) :- part_of(X,Z),
trans_partof(Z,Y),!.

220

T T ey

G. CONVERSION RULES

converts(A,feet, B feet) :- B = A.
converts(A,inches,B,inches) :- B = A.
converts(A,feet,B,inches) ;- B=A * 12,
converts(A,inches,B feet) - B=A /12,
converts(A,feet,B,yards) :- B =A /3.
converts(A,yards,B,feet) - B= A * 3.

convert(A,Dimension],B,Dimension2) :-

converts(A,Dimensionl,B,Dimension2),!.

convert(A,Dimension],B,Dimension2) :-
converts(A,Dimension1,X,Dimensionx),
not(equal(Dimension1,Dimensionx)),
convert(X,Dimensionx,B,Dimension2).

221

N

H. MISCELLANEOUS ROUTINES

/* find longest dimension of three passed in */

longest_dimension(Ht,Htunits, Wd,Wdunits,Dp,Dpunits,Len, Htunits) :-
convert(Wd,Wdunits,New_Wd,Htunits),
convert(Dp,Dpunits,New_Dp,Htunits),
maximum(New_Ht,New_Wd,Max),
maximum(Max,New_Dp,Len),!.

maximum(A,B,A) :-
A>B,!

maximum(A,B,B).

/* have match if within .25 inches */

match(A,A_Units,B,B_Units,C,C_Units,D,D_Units,A,A_Units,B,B_Units) :-

convert(A,A_Units,New_A inches),
convert(B,B_Units,New_B,inches),
convert(C,C_Units,New_C,inches),
convert(D,D_Units,New_D,inches),
((New_D - New_C) <0.25),
((New_D - New_C) > - 0.25),!.

match(A,A_Units,B,B_Units,C,C_Units,D,D_Units,A,A_Units,C,C_Units) :-

convert(A,A_Units,New_A inches),
convert(B,B_Units,New_B,inches),
convert(C,C_Units,New_C,inches),
convert(D,D_Units,New_D,inches),
((New_D - New_B) < 0.25),
((New_D - New_B) > - 0.25),!.

match(A,A_Units,B,B_Units,C,C_Units,D,D_Units,B,B_Units,C,C_Units):-

convert(A,A_Units,New_A inches),
convert(B,B_Units,New_B,inches),
convert(C,C_Units,New_C,inches),
convert(D,D_Units,New_D,inches),
((New_D - New_A) <0.25),
((New_D - New_A) > - 0.25),!.

match(A,A_Units,B,B_Units,C,C_Units,D,D_Units,A,A_Units,B,B_Units) :-

nl,write(’Error! No match found during raw material calculations.’),fail.

222

N

/* routine to get member of list */

member(X,[XIL)).
member(X,[YIL]) :- member(X,L).

/* routine to delete member of list */

dCICte(x: [] ’[])°
delete(X,[XIL],L) :- !.
delete(X,(YILL[YM]) :- delete(X,L.M).

equal(A,B) :-B = A,

223

S T e TARAR g s e

"~

ey

APPENDIX B - SAMPLE TRANSLATOR EXECUTION

% prolog
C-Prolog version 1.5
| ?- [main].

assembly reconsulted 9104 bytes 2.01667 sec.

conversion reconsulted 724 bytes 0.183334 sec.

interface reconsulted 12128 bytes 2.6 sec.
schema reconsulted 1008 bytes 0.266667 sec.
standards reconsulted 680 bytes 0.2 sec.
house1 reconsulted 11956 bytes 3.68333 sec.
routines reconsulted 1736 bytes 0.416674 sec.
materials reconsulted 8584 bytes 2.36667 sec.
main consulted 45920 bytes 11.95 sec.

yes

| 7- start.

check for house housel

check for exterior exteriorl

check for roof roof1

check for face facell

check for frame framel

grade marks must be clearly visible on all framing members for inspection

check for sub_cover sub_cover2

224

- —~——— e ——— —

check for sub_cover sub_coverl
sub_cover sub_coverl meets requirements; allowed substitutes are:

- tar_paperl
- tar_paper3

check for cover coverl

check for face facel2

check for frame frame2
grade marks must be clearly visible on all framing
members for inspection

check for sub_cover sub_coverl3

check for sub_cover sub_coverl4

sub_cover sub_cover14 meets requirements; allowed substitutes are:

- tar_paperl
- tar_paper3

check for cover cover12

check for room room1

check for face facel

check for sub_cover sub_cover3
check for cover cover2

check for face face2

check for sub_cover sub_coverd
check for cover cover3

check for face face3

check for sub_cover sub_cover5

check for cover coverd

225

e e -

"

wv‘—‘ L

check for face face4

check for sub_cover sub_cover6
check for cover coverS
check for face faceS
check for frame frame3
grade marks must be clearly visible on all framing
members for inspection
check for sub_cover sub_cover7
check for cover cover6
approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit
check for face face6
check for frame frame4
grade marks must be clearly visible on all framing
members for inspection
check for sub_cover sub_cover8
check for cover cover7
approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit
check for window window1
check for pane panel
pane panel passed quality check
check for sill silll

check for case casel

check for face face?

226

s e A o

check for frame frame5
grade marks must be clearly visible on all framing members for inspection

check for sub_cover sub_cover9
check for cover cover8
approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit
check for door doorl
door door1 passed - height
door door] passed - width
door door! passed - depth
check for face face8
check for frame frame6
grade marks must be clearly visible on all framing
members for inspection
check for sub_cover sub_cover10
check for cover cover9
approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit

check for face face9

check for frame frame7
grade marks must be clearly visible on all framing members for inspection

check for sub_cover sub_cover11
check for cover cover10

check for face facel0

check for frame frame8

check for sub_cover sub_cover12

check for cover coverl1l

227

B

2 e s ke e 2 o a2 2 abs e 2 2 2 2 3 2 e ke 2 o o e e e e e ol ae o s e e e e o e o o e e ake ake ok

Production Sequence Report for housel
- house style is single_room
and consists of [roof],exterior]l,room1]
e abe 2 bk s e e e a6 s 2k ok 2 ae ale o 2 2 2 e e 3 3 2 2 e e e ke e afe 2k age de e 2 e e 3 ke 3k e 3k ke

comment : normal for each face listed
e 200 a8k 3 s e 3¢ 2k e e 3 afe 206 e 3 ahe afc e e 2he 2hc 3¢ e e 2 2he 2 s8¢ e e e 2 2 2ge e e e e 2fe e e e e ofe ok

FACE X Y V4
facell 0 0.34 0.94
facel2 0 -0.34 0.94
facel 0 -1 0
face2 -1 0 0
face3 0 1 0
faced 1 0 0
face5 0 1 0
face6 1 0 0
face7 0 -1 0
face8 -1 0 0
face9 0 0 -1
facel0 0 0 1
e 2 2 3k e e 3 2 abe 3 3 bk e bk b 2 3 2k 2k 3 2 2 3 2k e 3 e e ae 3k 3 e 3 e 3o e e e 3 e e e ok e ke
* *
comment : erect foundation and frame
* *

e 2 20 e e e e 2 e e o e 2 2 e 2 3 e o ale o ol e 2k sl a2kl sk ol ke e ol e ab sl e o 3l e ok ol e e ke

frame8 assemble material type: concretel
frame4 assemble material type: wood8
frame6 assemble material type: wood8
frame3 assemble material type: wood8
frame$5 assemble material type: wood8
frame7 assemble material type: wood8
framel assemble material type: wood8

frame2 assemble material type: wood8

228

afe 20 o 2 a9 2 a2 2l 2 e o b o e 2 e 2 e e e 2 2 2 2 a2 afe 30 e 2 e o e o e 2 e b o o ke o ok ok

comment : put door framing in place
a2 2 20 3 ahe 2 3 20¢ 20 2 o ae 2 b 2 abe 2 e e o e abe 2 2 ake 3 o e e 3 e bk afe abe e e e 3 ok afe o ke ke o

doorl assemble ' material type: woodS
- attach to: face3 face?7

- location relativeto face7

X coordinate 125 inches
Y coordinate O inches
Z coordinate 42 inches

e sl 2 e ae 2 2 ok ok 2 e e e 2be 3 e 286 o 2 2 e o e e e e e 2k ke 2 2 3 ke 2k 2be e 3¢ abe de ake ok sk ok ke ke

comment : put window framing in place
e 20 2l 2 3 8¢ 3 e 2 3¢ afe ahe 2 abc 3k s 2 e ke o abe e 3c ke abe 2k ake 2k ke 2 e o 3 2 ke 2 ke e ke o o ke ke o ok

silll assemble window sill for: window1
- attach to: face2 face6

- location relativeto face6

X coordinate 96 inches
Y coordinate 0 inches
Z coordinate 66 inches
229

b e s ———— e -

2300k 3 o0 e 2 o ale e o o e s o s e o ale e a e e i e e ok o ale 2 3 s ae o e e o o e e o ol e de ke ak

comment : put up exterior siding
afe 2 3 e 2 e 2 a0 20 e e ae b e afe 2 e s 2k o i e 2 e ol abe dbe e abe oo o afe ol a2 ol o e e e o e ke ok

sub_coverl0 assemble material type: sheath_paper24
sub_cover9 assemble material type: sheath_paper24
sub_cover8 assemble material type: sheath_paper24
sub_cover7 assemble material type: sheath_paper24
cover6 assemble material type: brick88
cover/ assemble material type: brick88
cover8 assemble material type: brick88
cover9 assemble material type: brick88

e 2 a2 e s e e ok e 2 2 e 2 afe e o e e 2 e 2 o 3o 2 2 ke s a0 3 2 2 2 2 3 e o e e e s e ok ke sk

comment : put up roof
a8 2 2 2 e 2 3 2 e a3 2 2 ke 2 3 3 2 2l e 3 2 3k ok e 2 3k o ok ke 2 3k ok 3k ok 2k e o 3l ok e ok 3k e 3k

sub_coverl3 assemble material type: wood8
sub_cover2 assemble material type: wood8
sub_coverl assemble material type: tar_paper2
sub_coverl4 assemble material type: tar_paper2
coverl2 assemble material type: shinglel2

coverl assemble material type: shinglel2

AP = o - g st e

ol e afe e e o o o e e e o o o o s e e o o ol ol ol e vkl ok ok ok e ek ek ok o o ek ke ke ok

comment : put up faces for each room
dcakaleakakaeok ol ek skl ek g ke ko ke ek ks b ak o ko dk ok e ke ak ok ok ok

sub_coverll assemble material type: hardboard78
sub_cover6 assemble material type: hardboard34
sub_cover4 assemble material type: hardboard34
sub_cover5 assemble material type: hardboard32
sub_cover3 assemble material type: hardboard32

e 2k 2 e 2 2 e e 2 s 3 o e e o e 2 2 e ok e e 2 a3 o e ke 2 ale e i 3 e o ok e s e e e ol e ok ok

comment : build floor as last step
20 30 20e ke 20k 30 afe aje 2 o ake 2 afe ale afe 2 2 ae 2 2 afe abe 2 afe e 2 3 3 3 o 3 e 2 e abe e e ke ke 2 afe ok ok ke ok

sub_cover]12 assemble material type: hard_wood9

e e 3 29 e 20 e e o e 3 2 ke 2 2 26 e 2k 2 a3l e e e e e 3 a2 e 2 e e e ok e sl ok e o e ok ok ok ok

comment : put windows in place
e e e b e 2 e 2 2 2 ab e 2 e 2 3 2l 2 2k b e 2 e 3 e o 2 ok o ke a3 ake e ol o ke a3 abe e ol o g ok

window1 complete using panel casel

e 2 3 a2 o e e 2 2 o e e e 2 o a3 ke e o o afe ol e e e abe o ol e e o 3l e e e e o o o ok ke e ok

comment : put finish on windows and doors
e 3k 2 e 2 2 e 2 3 e 2 2 e 2 e e o ol 2k 2 e e 3l e s e 3 o e b o ke 2 o ol o 3 e e e e o ke oe ok

sill1 finish paint17 white

doorl finish paint21 brown

231

| PR e

ek e s e oo de e sk e de e ake s de ke e e d ok e e ok ek ok ke dk kol k-

comment : put on door knobs and hinges

e ale e 2 o o o abe s ol e e e o o e e e e e e o o o e ol ol e e o o ol e e ok e o o o e e ak ok ok

doorl assemble knob round32
doorl assemble hinge square3in

afe e 3o e o b e e b a e e e e 2 2 2 e e e e 2 3 3 e e e e e 2 e 3o e e e de e o o e e e de ok

comment : put final paint on faces
ik 2l 3 2k ajc 2l e 2 a5k 3 2 2 s 2k e e b ae 2 e ok e 3 afe o 3 e e 3 o e 3o 2k o e e 2 2 ok ke e e ke e

coverl0 paint material type: paintl7
cover3 paint material type: paint9
coverS paint material type: paint9
cover2 paint material type: paint9
cover4 paint material type: paint9

coverll paint material type: paint21

232

oy

ww

Raw Materials Report
Item Cost Units Required

doorl $16 1
windowl $30 1
concretel $1737 347.514
wood8 $3582 434.194

tar_paper2 $841 6.73333
hardboard32 $211 1.54776
hardboard34 $147 1.54722

hardboard78 $200 0.694444
hard_wood9 $900 75
sheath_paper24 $64 0.850277
shingle12 $2020 1616
brick88 $4224 3673.2

paint9 $8 1.0317

paint17 $4 0.551818

paint2i $12 0.923095

e 2 e 3 2 2 2l aje 2k s 3 2 2 2 2k 2 afe 2 2§ 3k 2je 3k 3k 2 2 ke 2 2k e 2fe e ofe o ok ok
* »*
Total material cost is $13996

* *

2k 2 3 e e 2 e e 20 2 2 0 e abe 0 3 2 0 2 e e 2 e e e e e s e e o 3 3o e e

Start Raw Materials Report (w/ substitute)

e 30 2 o e 20 2 e a2 e 2 2 ale a2 e 2 abe sl 2 2 s 2 o o 2o 2 o 3 a2 e o o e e s e 2 2 b e 3k o e ae age e e ok e ok ke ak
* *

sub_coverl: substitute tar_paper] for tar_paper2

* *

e 2 e 2 e 2 e 2 e ade 2 e 3 ale 2 26 2 e 2 2k 2 3 3 2 e o 2 o e 2 e 2 ol ok 36 2k e e 3 e ol ok e o ale ale 2 o e ke e ok de e ok

Raw Materials Report
Item Cost Units Required

doorl $16 1

window1 $30 1
concretel $1737 347514
tar_paperl $504 3.36666
wood8 $3582 434.194
tar_paper2 $420 3.36666
hardboard32 $211 1.54776
hardboard34 $147 1.54722
hardboard78 $200 0.694444
hard_wood9 $900 75
sheath_paper24 $64 0.850277
shinglel2 $2020 1616
brick88 $4224 3673.2

paint9 $8 1.0317
paintl7 $4 0.551818
pain21 $12 0.923095

20 ok e e e 2 o 2 e e o 3 abe sl e e a3 2 e e e o o 3 sl e e o o o ke e e ok

* *
Total material cost is $14079
* *

e 20 2 20 e 90 20 e s e o 3 2 a3 o e e o o e e e o o e afe e o o age ke e ok

ﬁ“ LN

2 ke 2 25 e 3 3 e s 6 2 3 e o abe ale e o e 3 afe e 2 o e 3 2k e 3 e ae k2 e e e a3 3 s b 2 2 e e 2 o ke 2k 3ok 3k ok ok ok

sub_cover]: substitute tar_paper3 for tar_paper2

» *
e 2 20 X afe 2 3 ahe ke 2 2 abe 2 3 o e 2k e 2 e 2 3 o 3 2 3 o 2 2 3 2 2 2 e 2 e 2 2 2 e abe 2 o e ke 2 2 e e ke ok ek ok

Raw Materials Report

Item Cost Units Required

doorl $16 1

windowl $30 1
concretel $1737 347.514
tar_paper3 $370 3.36666
wood8 $3582 434.194
tar_paper2 $420 3.36666
hardboard32 $211 1.54776
hardboard34 $147 1.54722

hardboard78 $200 0.694444
hard_wood9 $900 75
sheath_paper24 $64 0.850277
shingle12 $2020 1616
brick88 $4224 3673.2

paint9 $8 1.0317
paintl7 $4 0.551818
paint21 $12 0.923095

e o o o 2 o e o e o 2 o 2 2 o a2 ok ok ok o e 3 s e o a ae e e ke ok ke ok ok

%* *
Total material cost is $13945
* *

0 2 20 o s s o o o o o a3 3 o o o s o o o o o ok b o ok a ok ok e ok ok ok ok

235

39 o s 2 e e e e e e e e e 36 e e e 3 e e e 3 e 2k s o b e e e e e e e e e ok e ok o s e e s e s e e ke e e kel e
* *

sub_cover14: substitute tar_paper] for tar_paper2

* *

3¢ e e e e e e e e e e e e e 3¢ e 3 e ke e e ae 2 0 e 2 e e s e e e % e e e e 2 e e e 2 e e s e e e e e e e e sk A

Raw Materials Report

Item Cost Units Required

doorl $16 1

window1 $30 1
concretel $1737 347.514
tar_paper2 $420 3.36666
wood8 $3582 434,194
tar_paperl $504 3.36666
hardboard32 $211 1.54776
hardboard34 $147 1.54722
hardboard78 $200 0.694444
hard_wood9 $900 75
sheath_paper24 $64 0.850277

shingle12 $2020 1616
brick88 $4224 3673.2

paint9 $8 1.0317
paintl7 $4 0.551818
paint21 $12 0.923095

2k a2l 2 2 3 2 abe 2 e ok 3 2 3 abe e 3 2 3k o e 3 ak 2k o 3c ok Ak e e e ok e ok Ak

* *
Total material cost is $14079
* *

e e 2 sl e o e a3 2 o e o e e o e e o 3 o ke e o e e o 3 e 3 ke o e e ok

236

2 e 2 2 e 2 a8 e a2 e e s ke abe abe e 2 o 20 2 o e 2 e o e 3 6 36 b o e 2 3 3 3 o e 36 o ke 3 abe e e ok e 2k ae ok ok ok ke ok

sub_cover14: substitute tar_paper3 for tar_paper2

* *®

e e 2 e 2 o o 3 b 3¢ e 2 o o o 2 e e e o o o s o e e 3 e o ok ok s e ke e e ak 3 o 3 ok e e e sk ok e e e sk ok ok e ik ok

Raw Materials Report
Item Cost Units Required

doorl $16 1
window1 $30 1
concretel $1737 347.514
tar_paper2 $420 3.36666

wood8 $3582 434,194
tar_paper3 $370 3.36666
hardboard32 $211 1.54776
hardboard34 $147 1.54722

hardboard78 $200 0.694444
hard_wood9 $900 75
sheath_paper24 $64 0.850277
shingle12 $2020 1616
brick88 $4224 3673.2

paint9 $8 1.0317
paintl7 $4 0.551818
pain21 $12 0.923095

90 2 2 2 o o o o e 2 o o o e e ae e o e ak ok ak e e ek ak e e e ke ok ak e

* *
Total material cost is $13945
* *

206 20 e e 2 2 2 e e 2e 3 2 afe e e 3 o sk o 3 ke e e ok 3 o s ok e e o o o o e

[Prolog execution halted)

237

APPENDIX C - PROTOTYPE PROGRAM LISTINGS

A. PROCESS-ORIENTED PROTOTYPE LISTING

code = 4000
project "simulat2"”
domains
file =dat
1 = symbol
n = integer
r =real

include "tdoms.pro"
include "gdoms.pro"

database
menuno(row)
schema(l,row,col,row,col,])
schema_object(l,n,n,n,n)
type(L)
num_props(l,n)
selected(l)
design(l,1,1)
kind_of(1,1)
opened(l,])
saved(l)
ppdata(l,lLLLLLLLLLLLLI
operation(l,1,1,1,1,1,1,1,1,n)
product(l,1,n)
clock(n)
ready(n,L,1,n,n,n,n)
waitng(n,1,1,1,n,n)
waiting(n,],1,1,n,n)
quantity(n)
working(l,n,n,n,1,n,n)
least(n,n,l,I,n,n,n)
dline(n,n)
resource(l,n,n,n)

N o

machine_type(l,])
exception(l,L,1)
pp_except(L])
sched_except(l,1,1)

global Predicates

.......

/* (Row1,Col1,Row2,Col2,LineColor,FillColor,Fill)
Range for Rows: 0-31999
Range for Columns: 0-31999
Fill =0 A box will be drawn with color LineColor
but not filled
=1 A box will be drawn with color LineColor
and filled with color LineColor¥/

predicates
gwrite(row,col,string,color,integer)
nondeterm repeat
setEGApalette(integerlist)
putinlist(integerlist,integer,integer)
wfs(char)
wait(n)
set_pal
g0
design_phase
translatel
process_planning
translate2
scheduling
get_menu(n)
write_menu(l,color)
menu(n,l)
get_mouse_position(n,n)
action(n,n,n,l)
highlight(row,color,l)
color_of(1,color)
draw_schema
highlight_type(color,})
retract_others
retract_design
write_objects(l,1)

= pgadfunaugiiiipni,

’———————-——-——-——————-*

get_line_no(row)
reset_line_no
create_blanks(n,])
get_input(L,l)
input_props(l,1)
write_props(l)

i change_data(l,})
input_change(l,])
) write_data(l)
design_data(l,1,])
retract_assert(L,LL1)
load_schema(l)
load_design(l)
save_design(l)
check_quit(l)
check_quit2(},1)
transl

PP

produce(},1,n)
cut(l,n)

cut_top(l,n)
cut_legs(,n)
brackets(l,n)
brackets_top(l,n)
brackets_legs(l,n)
screw(l,n)
screw_top(l,n)
screw_legs(l,n)
weld(1,n)
weld_top(l,n)
weld_legs(l,n)
assemble(l,n)
assemble_top(l,n)
assemble_legs(l,n)
finish(l,n)
retract_pp
retract_pp_rest
part_one

trans2
check_cut(,11,LLL1)
check_screw(1,],1,1,1,1,1)
check_bracket(l,LLLL1,1)

240

—m

check_weld(l,1,1,1,1,1,1)

check_assembly(,1,1,1,1,1,])

add_quantities
add_quant(n,1,1I,n)
ret_qty(n)

print_report

finished

still_working

start

do_retractc(n)

available

can_sched
do_retractl(n,n,1,1,n,n,n)
do_retractw(l,n,n,n)
avail(n,},1,n,n,n,n)
avail2(n,1,1,n,n,n,n,n,n)
get_next
fig_cost(n,L1,n,n,n,n)
part_finished
do_retractwt(n,},})
retract_duplicates(n,1,1)
adj_time(l,n,n,n,1,n,n,n)
check_working(l,n,])
retract_sched
print_working
check_pp_exceptions(l)
display_pp_exceptions(l)
message(l,1,1)
write_messages
check_sched_exceptions
display_sched_exceptions
remove_windows

include "color.def™
include "cadmouse.pro"

goal
go.

241

ST T AR ORI e e e

-

clauses

color_of(menu,6).
color_of(status,4).
color_of(highlight,15).
color_of(high_sch_text,12).
color_of(schema_text,1).
color_of(schema_box,11).
color_of(schema_conn,6).

go :- repeat,
remove_windows,
design_phase,
remove_windows,
translatel,
process_planning,
translate2,
scheduling,!.

design_phase :-
part_one,
assert(menuno(1)),
get_menu(1),
gotowindow(1),
repeat,
gotowindow(4),
clearwindow,
gwrite(0,1,"Select a Command from the Menu Window",4,0),
get_mouse_position(X,Y),
action(1,X,Y,0),
C = "Quit",
retract_others,
retract_design,!.

242

€ s e — 52

w—-q—q—sf L W ——

P Y

part_one :-

text,

graphics(5,1,0),
makewindow(1,4,15,"Process Oriented System",0,0,20,54),
makewindow(2,4,4,"Menu",0,58,11,19),
makewindow(3,4,13,"Data",13,55,12,25),
makewindow(4,4,9,"Status",20,0,5,54),
gotowindow(1),

set_pal,

init_mouse,

show_mouse,

position_mouse(30,440),!.

translatel :-

text,

graphics(S,1,104),

makewindow(1,4,15,"Translating Data for Process Planning”,0,0,24,80),
transl,

gwrite(1,1,"Hit ‘ENTER’ to continue",1,0),

readchar(),!.

process_planning :-

text,

graphics(5,1,104),

makewindow(1,4,15,"Process Planning",0,0,24,80),
set_pal,

consult("pp.dat™),

gwrite(0,1,"process planning started",7,0),

check_pp_exceptions(Name),

PP

retract_pp,

save("process.dat"),

retract_pp_rest,

gwrite(10,1,"Hit ‘ENTER’ to continue",4,0),
readchar(),!.

243

A LRI TR A ———-

translate2 :-

text,

graphics(5,1,104),

makewindow(1,4,15," "Translating Data for Scheduling",0,0,24,80),
trans2,

gwrite(1,1,"Hit ‘ENTER’ to continue",1,0),

readchar(),!.

scheduling :-
text,
graphics(5,1,104),
makewindow(1,4,15,"Scheduling”,0,0,24,80),
set_pal,
assert(clock(0)),
consult("simdata.dta"),
check_sched_exceptions,
openwrite(dat,"simtest.doc"),
repeat,
writedevice(dat),
start,
finished,
closefile(dat),
| gwrite(16,1,"Scheduling complete - consult simtest.doc for results”,1,0),
* gwrite(18,1,"Hit ‘ENTER’ to continue" 4,0),
readchar(),
writedevice(screen),!.

remove_windows :- removewindow,fail,!.
remove_windows :- !.

get_menu(N) :-

gotowindow(2),
clearwindow,
retract(menuno(_)),
assert(menuno(1)),
color_of(menu,Color),
repeat,

menu(N,X),

write_menu(X,Color),

X = "Quit",!.

244

LI

write_menu(X,Color) :-
retract(menuno(R)),
X1=X,
gwrite(R,1,X1,Color,0),
Ri=R+1,
assert(menuno(R1)),!.

get_mouse_position(C,R) :-
repeat,
bios(Sl,reg(3,0,0,0,0,0,0,0),rcg(_,Button,Col,Row,_,_,_,_)),
Button > 0,
C =(Col / 640) * 80,
R =(Row /350) * 24!,

wis(C) :- keypressed,readchar(C),!.
wis(C) :- wait (2000),wfs(C).

wait(0) :- !.
wait(N) :- N1 = N-1, wait(N1).

action(_,X,_,"Continue") ;-
X>58,X<77,
position_mouse(30,440),fail,!.

action(1,X,2,C) :- X> 58, X < 71,
color_ofi(highlight,Color),
highlight(1,Color,"Load C Schema"),
gotowindow(4),
clearwindow,
gwrite(0,1,"Enter the filename: ".4,0),
readdevice(keyboard),
readln(Fname),
load_schema(Fname),
color_of(menu,Mcolor),
highlight(1,Mcolor,"Load C Schema"),
C = "Continue",!.

245

action(1,X,3,C) :- X>58,X <77,
opened(design,),
color_of(highlight,Color),
highlight(2,Color,"Load Design Data"),
gotowindow(4),
clearwindow,
gwrite(0,1,"A design data file is already opened”,1,0),
gwrite(2,1,"Press ‘ENTER’ to continue",4,0),
readchar(),
color_of(menu,Mcolor),
highlight(2,Mcolor,"Load Design Data"),
C = "Continue",!.

action(1,X,3,C) :-X > 58, X < 77,
color_of(highlight,Color),
highlight(2,Color,"Load Design Data"),
gotowindow(4),
clearwindow,
gwrite(0,1,"Enter the filename: ",4,0),
readdevice(keyboard),
readin(Fname),
load_design(Fname),
color_of(menu,Mcolor),
highlight(2,Mcolor,"Load Design Data"),
C = "Continue",!.

action(1,X,4,C) :- X > 58, X < 77,
color_of(highlight,Color),
highlight(3,Color,"Update Data"),
get_menu(2),
repeat,
gotowindow(4),
clearwindow,
gwrite(0,1,"Select a Type or ‘Quit’",4,0),
get_mouse_position(X2,Y2),
action(2,X2,Y2,C2),

C2 = "Quit",
get_menu(1),
C = "Continue",!.

246

action(1,X,5,C) :-X > 58,X <77,

color_of(highlight,Color),
highlight(4,Color,"Save Design Data"),
gotowindow(4),

clearwindow,

gwrite(0,1,"Enter the filename: ,4,0),
readdevice(keyboard),

readin(Fname),

save_design(Fname),
color_of(menu,Mcolor),
highlight(4,Mcolor,"Save Design Data"),
C = "Continue",!.

action(1,X,7,C) :- X > 58, X < 77,

check_quit(C),!.

action(2,Y,X,C) :-

schema_object(Type,Xmin,Ymin,Xmax, Ymax),
X > Xmin, X < Xmax, Y > Ymin, Y < Ymax,
assert(selected(Type)),
position_mouse(30,440),
color_of(high_sch_text,Color),
highlight_type(Color,Type),
repeat,
get_menu(3),
gotowindow(4),
clearwindow,
gwrite(0,1,"Select a Command from the Menu Window",4,0),
get_mouse_position(X2,Y2),
action(3,X2,Y2,C2),
C2 = "Quit",
color_of(schema_text,Tcolor),
highlight_type(Tcolor,Type),
retract(selected(Type)),
get_menu(2),
C ="Continue",!.

action(2,X,5,C) :- X > 58, X < 77,

C = "Quit",!.

247

action(3,X,2,C) :- X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
gwrite(0,1,"Enter name of object of type",4,0),
Types = Type,
gwrite(0,30,Types,1,0),
str_len(Type,Len),
Input_pos = 30 + Len,
gwrite(0,Input_pos," ",9,0),
readln(Name),
get_input(Name, Type),
makcwindow(3,4,l3,"Data",13,55,12,25),
gotowindow(3),
clearwindow,
C = "Continue",!.

action(3,X,3,C) :- X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
not(kind_of(_,Type)),
gwrite(1,1,"No data exists for that type",1,0),
gwrite(2,1,"press ‘ENTER’ to continue" 4,0),
readchar(),
C ="Continue",!.

| action(3,X,3,C) :- X > 58, X < 77,
gotowindow(4),

clearwindow,

selected(Type),

gwrite(0,1,"Enter name of object to change:"4,0),
gwrite(0,31," ",1,0),

readln(Name),

change_data(Name,Type),

{ makewindow(3,4,l3,"Data",13,55,l2,25),
] gotowindow(3),

clearwindow,

C ="Continue",!.

248

action(3,X,4,C) :- X > 58, X <77,
gotowindow(4),
clearwindow,
selected(Type),
not(kind_of(_,Type)),
gwrite(1,1,"No data exists for that type”,1,0),
gwrite(2,1,"press ‘ENTER’ to continue",4,0),
readchar(),

C ="Continue",!.

action(3,X,4,C) :- X > 58, X < 77,
gotowindow(4),
clearwindow,
sclected(Type),
makewindow(3,4,7,"View Data",13,55,12,25),
repeat,

kind_of(Object_name,Type),

gotowindow(3),

clearwindow,

reset_line_no,

gwrite(0,1,"name:",2,0),0bjs = Object_name,

gwrite(0,7,0bjs,9,0),

write_objects(Object_name, Type),
gotowindow(4),

clearwindow,

gwrite(0,1,"Press ‘ENTER’ to continue or ‘qQ’ to quit ",4,0),

readchar(Quit),

Quit ="q’,
makcwindow(3,4,l3,"Data",13,55,12,25),
gotowindow(3),
clearwindow,

C = "Continue",!.

action(3,X,6,C) :- X > 58, X < 77,
C = "Quit",!.

249

Mv

check_quit(C) :-
saved(),
C ="Quit",!.

check_quit(C) :-
gotowindow(4),
clearwindow,
gwrite(0,1,"The design data has not been saved",1,0),
gwrite(1,1,"Press ‘s’ to save or ‘q’ to quit ",4,0),
readln(Quit),

! check_quit2(Quit,C),!.

check_quit2(q,"Quit") :- !.
check_quit2(_,"Continue") :-!.

highlight(Row,Color, Text) :-
gotowindow(2),Texts = Text,
gwrite(Row, 1, Texts,Color,0),!.

highlight_type(Tcolor,Title) :-
schema(text,X,Y,_,_,Title),
str_len(Title,Len),
Y4=Y + (8- (Len/2)),
X4=X,
gotowindow(1), Titles=Title,
gwrite(X4,Y4,Titles, Tcolor,0),!.

draw_schema :-
color_of(schema_text,Tcolor),
schema(text,X,Y,_,_,Title),
str_len(Title,Len),
Y4=Y + (8- (Len/2)),
X4=X,
gotowindow(1), Titles=Title,
gwrite(X4,Y4,Titles, Tcolor,0),
X2=X-1,X3=X+3,Y2=Y+2,Y3 = Y+15,
asscrt(schema_object(Title,X2,Y2,X3,Y3)),fail,! .

250

draw_schema :-
color_of(schema_box,Bcolor),
schema(box, X, Y, X1,Y1,.),
X2=X,Y2=Y,X3=X1,Y3=Y1,
box(X2,Y2,X3,Y3,Bcolor,Bcolor,0),fail,!.

draw_schema :-
color_of(schema_conn,Ccolor),
schema(conn,X,Y,X1,Y1,),
X2=X,Y2=Y,X3=X1,Y3=Y1,
line(X2,Y2,X3,Y3,Ccolor),fail,!.

draw_schema.

retract_others :- retract(menuno(_)),fail,!.
retract_others :- retract(schema(_,_,_,_._,_)).fail,!.
retract_others :- retract(schema_object(_,_,_,_,)).fail, .
retract_others :- retract(type(_,_)).fail,!.

retract_others :- retract(num_props(_,_)),fail,!.
retract_others :- retract(selected()),fail,!.
retract_others :- retract(opened(_,)).fail,!.
retract_others :- retract(saved(_)),fail,!.

retract_others :- retract(pp_except(_,)),fail,!.
retract_others :- .

retract_design :- retract(design(_,_,_))fail,!.
retract_design :- retract(kind_of(_,_)).fail,!.
retract_design :- !

retract_pp :- retract(product(_,_,)).fail,!.
retract_pp :- retract(exception(_, ,_)).fail.!.
retract_pp :- retract(pp_except(_,_)).fail,}.

retract_pp :- retract(ppdata(_, _,_,_»_s s ssrs_rrs)),fail,!.
retract_pp :- !.
retract_pp_rest :- retract(operation(_,_,_,_._s_s_s_s.») fail,!.

retract_pp_rest :- !.

251

——ﬁ-———_‘ ——

e

A ——— e e aeipy e

[T = S

retract_sched :- retract(waiting(_,_,_,_, ,_)).fail,!.
retract_sched :- retract(ready(_, ,_, , ,_,))fail,!l.
retract_sched :- retract(dline(_,_)),fail,!.
retract_sched :- retract(machine_type(_,_)),fail,!.
retract_sched :- retract(clock()).fail,!.

retract_sched :- retract(resource(_,_,_,_)).fail,!.
retract_sched :- retract(exception(_,_,_)),fail,!.
retract_sched :- retract(sched_except(_,_,_)).fail,!.
retract_sched :- retract(working(_._, ,_,_,_,_)),fail.!.
retract_sched :- I.

write_objects(Obj, Type) :-
type(Type,Prop),
design_data(Obj,Prop, Val),
get_line_no(N),Props=Prop,
gwrite(N,1,Props,12,0),
str_len(Prop,Len),
Write_pos = Len + 1,
gwrite(N,Write_pos,":",12,0),
Write_pos2 = Len + 3,Vals=Val,
gwrite(N,Write_pos2,Vals, 1,0),fail,!.

write_objects(_,_) :- !.

get_input(Name, Type) :-
kind_of(Name,Type),
gotowindow(4),
gwrite(1,1," An object already exists by that name",1,0),
gwrite(2,1,"press ‘ENTER’ to continue",4,0),
readchar(),!.

get_input(_,) :-
retract(saved()),fail,!.

N

get_input(Name,Type) :-
assert(kind_of(Name, Type)),
makewindow(3,4,7,"Add Data",13,55,12,25),
gotowindow(3),
clearwindow,
reset_line_no,
gwrite(0,1,"name:",2,0),
Objs = Name,
gwrite(0,7,0bjs,9,0),
write_props(Type),
reset_line_no,
input_props(Name, Type),!.

input_props(Name,Type) :-
type(Type,Prop),Prop “"name",
Props = Prop,
gotowindow(4),
clearwindow,
gwrite(0,1,"Enter",4,0),
gwrite(0,7,Props, 1,0),
str_len(Prop,Len),
Input_pos = Len + 7,
gwrite(0,Input_pos,": ",4,0),
% readln(Value),
assert(design(Name,Prop, Value)),
gotowindow(3),
Write_pos = Len + 3,
get_line_no(N),
Values = Value,
1 gwrite(N,Write_pos, Values, 1,0),fail,!.

input_props(_,_):- !.

write_props(Type) :-
type(Type,Prop),Prop “"name”,
Props = Prop,
get_line_no(N),
gwrite(N, 1,Props,12,0),
str_len(Prop,Len),
Write_pos =Len + 1,
gwrite(N,Write_pos,":",12,0),fail,!.

253

bR A -

write_props(_) :- !

change_data(Name,_) :-

gotowindow(4),

not(design(Name,_,)),

gwrite(1,1,"No object exists by that name”,1,0),
gwrite(2,1,"press ‘ENTER’ to continue”,4,0),
readchar(_),!.

change_data(Name,Type) :-

gotowindow(4),

not(kind_of(Name, Type)),
gwrite(1,1,"Object is the wrong type",1,0),
gwrite(2,1,"press ‘ENTER’ to continue” 4,0),
readchar(),!.

change_data(_,) :-

retract(saved()),fail,!.

change_data(Name,Type) :-

makewindow(3,4,7,"Change Data",13,55,12,25),
gotowindow(3),

clearwindow,

reset_line_no,

gwrite(0,1,"name:",2,0),

Objs = Name,

gwrite(0,7,0b;js,9,0),

write_data(Name),

reset_line_no,

input_change(Name,Type),!.

254

-—T——-—-""'——_f ~

e . 4

g

input_change(Name, Type) :-
WPCCTYPC,PI'OP),PI'OP "name",
Props = Prop,
gotowindow(4),
clearwindow,
gwrite(0,1,"Enter",4,0),
gwrite(0,7,Props, 1,0),
str_len(Prop,Len),
Input_pos=Len +7,
gwrite(O.Input_Pos,": "’4'0)i
readln(Newvalue),
retract_assert(Name,Prop,Value,Newvalue),
gotowindow(3),
Write_pos = Len + 3,
get_line_no(N),
str_len(Value, Vlen),
create_blanks(Vlen,Blank),
Blanks = Blank,
gwrite(N,Write_pos,Blanks,1,0),
Values = Newvalue,
gwrite(N,Write_pos, Values,1,0),fail,!.

input_change(_,_) :- !.

write_data(Name) :-
kind_of(Name,Type),
type(Type,Prop),
design_data(Name,Prop,Val),Prop "name",
Props = Prop,Vals = Val,
get_line_no(N),
gwrite(N,1,Props,12,0),
str_len(Prop,Len),
Write_pos = Len + 1,
gwrite(N,Write_pos,":",12,0),
Write_pos2 = Len + 3,
gwrite(N,Write_pos2,Vals,1,0),
fail,!.

write_data(_) :- 1.

design_data(Name,Prop,Val) :- design(Name,Prop, Val),!.

255

retract_assert(Name,Prop,Value,Newvalue) :-
retract(design(Name,Prop,Value)),
assert(design(Name,Prop,Newvalue)),!.

load_schema(Fname) :-
opened(schema, Fname),
gotowindow(4),
clearwindow,
gwrite(0,1,"This schema data has already been loaded",1,0),
gwrite(2,0,"Press ‘ENTER’ to continue”,4,0),
readchar(_),!.

load_schema(Fname) :-
not(existfile(Fname)),
gotowindow(4),
clearwindow,
gwrite(0,1,"This schema file doesn’t exist”,1,0),
gwrite(2,0,"Press ‘ENTER’ to continue”,4,0),
readchar(),!.

load_schema(Fname) :-
consult(Fname),
assert(opened(schema,Fname)),
gotowindow(1),
draw_schema Fnames = Fname,
gwrite(0,1,"Schema File:",4,0),
gwrite(0,14,Fnames, 1,0),!.

load_design(Fname) :-
opened(design,Fname),
gotowindow(4),
clearwindow,
gwrite(0,1,"This design data has already been loaded™,1,0),
gwrite(2,0,"Press ‘ENTER’ to continue",4,0),
readchar(),!.

256

load_design(Fname) :-
not(existfile(Fname)),
gotowindow(4),
clearwindow,
gwrite(0,1,"This data file doesn’t exist",1,0),
gwrite(2,0,"Press ‘ENTER’ to continue”,4,0),
readchar(),!.

load_design(Fname) :-
existfile(Fname),
consult(Fname),
assert(opened(design,Fname)),
assert(saved(Fname)),
gotowindow(1),
gwrite(1,1,"Data File:",4,0),
Fnames = Fname,
gwrite(1,14,Fnames,1,0),!.

save_design(Fname) :-
saved(Fname),
gotowindow(4),
clearwindow,
gwrite(0,1,"The design data has already been saved”,1,0),
gwrite(2,0,"Press ‘ENTER’ to continue”,4,0),
readchar(),!.

save_design(Fname) :-
save("temp.dat"),
retract_others,
save(Fname),
assert(saved(Fname)),
retract_design,
consult("temp.dat"),!.

get_line_no(N) :-
retract(menuno(N)),
Ni=N+1,
assert(menuno(N1)),!.

reset_line_no :-
retract(menuno(_)),
assert(menuno(1)),!.

create_blanks(0,"").

create_blanks(1,").

create_blanks(N,Blanks) :- N1 =N- 1,
create_blanks(N1,Nblanks),
concat(Nblanks," ",Blanks),!.

menu(1,"Load C Schema").
menu(1,"Load Design Data").
menu(1,"Update Data").
menu(1,"Save Design Data").
menu(1,"").

menu(1,"Quit").

menu(2,”").
menu(2,"").
menu(2,"").
menu(2,"Quit").

menu(3,"Add data").
menu(3,"Change data").
menu(3,"View data").
menu(3,"").
menu(3,"Quit").

J* Translator] Rules follow */

trans] :- consult("design.dat"),
kind_of(Name,top),

assert(product(Name,top,15)),fail,!.

transl :-

product(Name,_,),
design(Name,depth,Dep),
design(Name,width,Wid),
design(Name,height,Hgt),
design(Name,tolerance, Tol),
design(Name,material,Mat),
design(Name,finish,Fin),
kind_of(Name1,connect),
design(Name1,type,Ctype),
design(Name1,"x location",X),
design(Namel,"y location",Y),
design(Name1,"z location",Z),
design(Name?2,connector,Namel),
design(Name2,radius,Rad),
design(Name2,material,Lmat),

design(Name?2,length,Llen),

assert(ppdata(Name,Dep,Wid,Hgt,Tol, Mat,Fin,Ctype,X,Y,Z Rad,Lmat,Llen,Name?2)) fail !

trans] :-
retract_design,
save("pp.dat"),
retract_pp,!.

/* Process Planning Rules follow */

pp :- product(Name, Type,Qty),
produce(Type,Name,Qty),!.

pp :- gwrite(0,1,"PP failed",4,0),!

produce(top,Name,Qty) :-
cut(Name,Qty),
brackets(Name,Qty),
screw(Name,Qty),
weld(Name,Qty),
assemble(Name,Qty),
finish(Name,Qty),!.

259

cut(Name,Qty) :-
cut_top(Name,Qty),
cut_legs(Name,Qty),!.

cut(_,_) :- gwrite(1,1,"cut failed",4,0),!.
cut_top(Name,Qty) :-

ppdata(Name,Dep,Wid Hgt,_Mat, , , . ., ...),
assert(operation(Name,tcut,Dep,Wid,Hgt,"0","0","0",Mat,Qty)),!.

cut_legs(Name,Qty) :-
PPdam(Name,_,_,_»_,_,_,_,X,Y,Z,_,Lmat,Llcn,N ame2),
assert(operation(Name2,lcut,Llen,"0","0",X,Y,Z,Lmat,Qty)),fail,!.

cut_legs(_,) :-l.
brackets(Name,Qty) :-
brackets_top(Name,Qty),
brackets_legs(Name,Qty),!.
brackets(_,) :- gwrite(2,1,"brackets failed",4,0),!.
brackets_top(Name,Qty) :-
ppdata(Namea_u_.'_s_:_s_’ braCkCts_’_y_o_.vLmatv._,_)]
assert(operation(Name,tbracket,"0","0","0","0","0","0" L mat,Qty)),!.
brackets_top(_,_) :- !.
brackets_legs(Name,Qty) :-
ppdata(Name,_, ,_._,_, ,bracket,X,Y,Z, ,Lmat, ,Name2),
assert(operation(Name2,lbracket,"0","0","0",X,Y,Z,Lmat,Qty))fail,!.
brackets_legs(_,_) :-!.
screw(Name,Qty) :-
screw_top(Name,Qty),
screw_legs(Name,Qty),!.

screw(_,_) :- gwrite(3,1,"screw failed",4,0),!.

260

screw_top(Name,Qty) :-
ppdata(Name, _, ,_, , , ,screw,_, ,_, JLmat,_,),
assm(owraﬁon(Name’tmw’ "0","0"'"0", "0","0","0"’1,mat,Qty))' ! .

screw_top(_,_) :- L.
screw_legs(Name,Qty) :-
PPdala(Name’_»_’..,_._s_»SCYeW,x -Y,Zg_,Lmat,_,N ach),
assert(operation(Name2,Iscrew,"0","0","0",X,Y,Z,Lmat,Qty)),fail,!.
screw_legs(_,_) :-!.

weld(Name,Qty) :-
weld_top(Name,Qty),
weld_legs(Name,Qty),!.

weld(_,) :- gwrite(4,1,"weld failed",4,0),!.
weld_top(Name,Qty) :-
ppdata(Name,_,_»_;_,_,_,WCId,._,.,_,_,Lmat,_,_),
asscrt(operation(Name,twcld,"O","0","0","0","0","0",Lmat,Qty)),!.
weld_top(_,_) :~ !.

weld_legs(Name,Qty) :-
ppdata(Name, _,_,_, , , ,weld,X,Y,Z,_Lmat,_,Name2),
assert(operation(Name2,lweld,"0","0","0",X,Y,Z,Lmat,Qty)),fail,!.

| weld_legs(_,) :-!.
assemble(Name,Qty) :-

assemble_top(Name,Qty),
assemble_legs(Name,Qty),!.

assemble(_,_) :- gwrite(5,1,"assemble failed",4,0),!.

assemble_top(Name,Qty) :-
ppdata(Name, _,_,_, , , bracketX,Y,Z, , ,),
asscrt(opcration(Name,tasscmblc,"O","O","O",X,Y,Z,bracket,Qty)),fail,.'.

261

assemble_top(Name,Qty) :-

ppdata(Name-_.»_’_;_,_,_,mw»x:YyZ:_,_’_:_) ’
assert(operation(Name,tassemble,"0","0","0",X,Y,Z,screw,Qty)) fail,!.

assemble_top(_,_) :- !.

assemble_legs(Name,Qty) :-
ppdata(Name, _,_,_, ,_, ,bracketX,Y,Z, , , Name2),
assert(operation(Name2,lassemble,"0","0","0",X,Y,Z,bracket,Qty)) fail,!.

assemble_legs(Name,Qty) :-
ppdata(Name,_, ,_, , , ,screw,X,Y,Z, , , Name2),
assert(operation(Name2,lassemble,"0","0","0",X,Y,Z,screw,Qty)),fail,!.

assemble_legs(_,_) :- I
finish(Name,Qty) :-

ppdata(Name,_,_,_,_, JFinish, , , ., ., ,)s
assert(operation(Name,finish,”0","0",”0","0","0","0" Finish,Qty)),!.

finish(_,_) :- gwrite(6,1,"finish failed" 4,0),!.

/* Translator2 Rules follow */

trans2 :-
consult("process.dat”),fail,!.

trans2 ;-
operation(Name,tcut,_, X, Y,Z, ,_,),
assert(ready(1,Name,sa,0,1,1,1)),
check_cut(tcut,Name,sa,Loc1,X,Y,Z),
check_screw(tscrew,Name,Locl,Loc2,X,Y,Z),
check_bracket(tbracket,Name,Loc2,Loc3,X,Y,Z),
check_weld(tweld,Name,Loc3,Loc4,X,Y,Z),
check_assembly(tassemble,Name,Loc4,_,X,Y,Z),fail,!.

262

— —— - —

trans2 :-
operation(Name,lcut,_,_X,Y,Z, , .,),
assert(ready(1,Name,sa,0,1,1,1)),
check_cut(lcut,Name,sa,Loc1,X,Y.Z),
check_screw(lscrew,Name,Loc1,Loc2,X,Y,Z),
check_bracket(]bracket,Name,LocZ,Loc3,X,Y,Z),
check_weld(lweld,Name,Loc3,Loc4,X,Y,Z),
check_assembly(lassemble,Name,Loc4, ,X,Y,Z),fail,!.

trans2 :-
add_quantities,
retract_pp,
retract_pp_rest,
save("sched.dat"),!.

check_cut(tcut,Name,Oldl,a,_,__,_) -
operation(Nametcut, , ,_,_, ., ., ,Qty),
assert(waitng(1,Name,Oldl,a,1,Qty)),!.

check_cut(tcut,_,Oldl,Oldl,_,_,_) -1,

check_cut(lcut,Name,Oldl,a,X,Y,Z) -
operation(Name,lcut,_, ,X,Y,Z,_,_,Qty),
assert(waitng(1,Name,Oldl,a,2,Qty)),!.

check_cut(lcut,_,Old,0Mdl,_,_,):-!.

check_screw(tscrew,Name,Oldl,e,_,_,_) :-
operation(N ame,tscrew, _,_, , , . . .Qty),
concat(Oldl,"e", Trans),
assert(waitng(1,Name,Oldl,Trans,0,1)),
assert(waitng(1,Name,Trans,e, 1 SQty)),!.

check_screw(tscrew,_,Oldl,Oldl,_,_,_) -1

check_screw(lscrew,Name,Oldl,e,X,Y,Z) -
operation(N ame,lscrcw,_,_,X,Y,Z,_,_,,Qty),
concat(Oldl,"e", Trans),
assert(waitng(1,Name,Oldl, Trans,0,1)),
asscn(waimg(l,Name,Trans,e,z,Qty)),!.

check_screw(lscrcw,_,Oldl,Oldl,_,_,_) -1

263

check_bracket(tbracket,Name,Oldl,b, _,_,):-
operation(N ame,tbracket, , , , , , . Qty),
concat(Oldl,"b", Trans),
assert(waitng(1,Name,Oldl, Trans,0,1)),
assert(waitng(1,Name, Trans,b,1,Qty)),!.

check_bracket(tbracket,_,01dl,0ldl,_, ,):-!.

check_bracket(lbracket,Name,Oldl,b,X,Y,Z) :-
operation(Name,lbracket,_, ,X,Y,Z, , ,Qty),
concat(Oldl,"b", Trans),
assert(waitng(1,Name,Oldl,Trans,0,1)),
assert(waitng(1,Name, Trans,b,2,Qty)),!.

check_bracket(lbracket,_,Old],Oldl,_,_,):-!.

check_weld(tweld,Name,Oldl,c,_, ,) :-
operation(Name,tweld,_,_,_,_, , , ,Qty),
concat(Oldl,"c", Trans),
assert(waitng(1,Name,Oldl, Trans,0,1)),
assert(waitng(l,Name,Trans,c,l,Qty)),!.

check_weld(tweld, ,01d1,01dl, _,_,):-!.

check_weld(lweld,Name,Oldl,c,X,Y,Z) :-
operation(N ame,lweld,_,_,X,Y,Z, , Qty),
concat(Oldl,"c",Trans),
assert(waitng(1,Name,Old], Trans,0,1)),
assert(waitng(1,Name, Trans,c,2,Qty)),!.

check_weld(lweld,_,01d1,01dl, , ,):-!.

check_assembly(tassemble,Name,Oldl,d,_,_,_) -
operation(N ame,tassemble, , , , , ., . Qty),
concat(Oldl,"d", Trans),
assert(waitng(1,Name,Oldl, Trans,0, 1)),
assert(waitng(1,Name, Trans,d,1,Qty)),!.

chcck_assembly(tassemble,_,Oldl,Oldl,_,_,_) =L

check_asscmbly(lasscmble,Name,Oldl,d,X,Y,Z) -
opcration(Name,lasscmblc,_,_,X,Y,Z,_,_,Qty),
concat(Oldl,"d", Trans),
assert(waitng(1,Name,Old], Trans,0,1)),
assert(waitng(1,Name,Trans,d,2,Qty)),!.

chcck_assembly(lasscmblc,_,Oldl,Oldl,_,_,_) =

264

add_quantities :-
retract(waitng(N,Name Fr,To,Tool,Qty)),
assert(quantity(Qty)),
add_quant(N,Name,Fr,To,Tool),
retract(quantity(Newq)),
assert(waiting(N ,Name,Fr,To,Tool,Newq)),fail,!.
add_quantities :- !.

add_quant(N,Name,Fr,To,Tool) :-
Tool =0,
retract(waitng(N,Name,Fr,To,_,_)),
fail,!.

add_gquant(N,Name,Fr,To,) :-
retract(waitng(N,Name,Fr,To,_,Qty)),
ret_qty(Q),
Newq =Qty + Q,
assert(quantity(Newq)),fail,!.

add_quant(_,_,_,_,_) - !

ret_qty(Q) :- retract(quantity(Q)),!.

/* Scheduling Rules follow */

finished :-
not(ready(_,_,_,—»—»_»_))s
not(waiting(_,_,_,_,_»_)),
not(still_working),!.

still_working :- working(_,_,_,_,_,_,Time),Time > 0.

start :-
do_retractc(T),
TI=T+1,
assert(clock(T1)),
available,
print_report,
part_finished,!.

265

A

——

e ek b

- —

do_retractc(T) :- retract(clock(T)),!.
available :- not(can_sched),!.

available :-
repeat,
get_next,
do_retractl(Cost,P,Name,Mt,Tool,Mn, Time),
do_retractw(Mt,Mn,0,Cost),
avail(P,Name Mt,Tool,Mn, Time,Cost),
not{can_sched),!.

can_sched :-
ready(P,_.c,_,_,_,_),
not(waiting(P,_,_.c,_,_)),
working(c,_,_,_,_,_,0),..

can_sched :-
ready(P,_.d,_,_,_,_),
not(waiting(P,_,_.d,_,)),

can_sched :-
ready(_, Mt,_,_,_,),
Mt <> "¢", Mt <> "d",
workingMt,_,_,_,_,_,0),!.

do_retractl(Cost,P,Name,Mt, Tool, Mn,Time) :-
retract(least(Cost,P,Name Mt, Tool,Mn, Time)),!.

do_retractw(_,_, ,9999) :- 1.

do_retractw(Mt,Mn,D,) :- retract(workingMt,Mn,_,_,_, ,D)),!.

avail(_,_,_,_,_,_,9999) - !~
avail(P,Name Mt,Tool,Mn,Time,_) :-

avail2(P,Name ,Mt,Tool,Mn,Time,Org_quan,Quan,Seq),

Quanl = Quan - 1,
Seql =Seq + 1,
Quanl >0,

assertz(ready(P,Name,Mt,Tool,Org_quan,Quanl,Seq1)),

retract_duplicates(P,Name,Mt),!.
avail(_,_,_,_,_,_,_) - !'

266

avail2(P,Name,Mt, Tool,Mn,Time,Org_quan,Quan,Seq) :-
retract(ready(P,Name,Mt,Tool,Org_quan,Quan,Seq)),
assert(working(Mt,Mn,Tool,P,Name,Seq,Time)),!.

retract_duplicates(P,Name,c) :-
ready(P,Name2,c, , , ,),
Name2 <> Name,
retract(ready(P,Name2,c,_,_,_,)).fail,!.
retract_duplicates(P,Name,d) :-
ready(P,Name2,d, ,_, ,),
Name2 <> Name,
retract(ready(P,Name2,d,_._,_,)).fail,!.
retract_duplicates(_,_,) :- !.

get_next :- assert(least(9999,0,x,x,0,0,0)),
ready(P,Name,c,Tool,_,_,),
not(waiting(P,_,_,c,_,_)),
fig_cost(P,Name,c,Tool,Cost,Mn,Time_req),
least(X,Y,N,Z,A,B,C),
Cost < X,
do_retractl(X,Y,N,Z,A,B,C),
assert(least(Cost,P,Name,c,Tool,Mn,Time_req)),
fail,!.

get_next :-
ready(P,Name,d,Tool,_,_,_),
not(waiting(P,_,_,d,_,_)),
fig_cost(P,Name,d,Tool,Cost, Mn,Time_req),
least(X,Y,N,Z,A,B,C),
Cost <X,
do_retractl(X,Y,N,Z,A,B,C),
assert(least(Cost,P,Name,d, Tool,Mn, Time_req)),
fail,!.

267

get_next :-
ready(P,Name,Mt,Tool,_,_,_),
Mt <> "¢", Mt < "d",
ﬁg_cost(P,Name,Mt,Tool,Cost,Mn,Timc__rcq),
least(X,Y,N,Z,A,B,C),
Cost < X,
do_retracti(X,Y,N,Z,A,B,C),
assert(lcast(Cost,P,Name,Mt,Tool,Mn,Time__req)),
fail,!.

get_next :- L.

ﬁg_cost(P,Name,Mt,Tool,Cost,Mn,Time_req) -
workingMtMn,_,_,_,_,0),
wotkjng(Mt,_,_,P,Namc,_,Timc),Time 0,
dline(P,D),
resource(Mt, Tool,Mn,Time_req),
Cost =D * Time_req - 3,!.

ﬁg_cost(P,Name,Mt,Tool,Cost,Mn,Time_req) -
working(Mt,Mn,_,_,Name,_,0),
dline(P,D),
resource(Mt, Tool,Mn,Time_req),
Cost =D * Time_req - 2,!.

ﬁg_cost(P,__,Mt,Tool,Cost,Mn,Time_rcq) :-
working(Mt,Mn,_,P,_,_,0),
dline(P,D),
resource(Mt,Tool,Mn,Time_req),
Cost =D * Time_req - 1,!.

fig_cost(P,__,Mt,Tool,Cost,Mn,Time_rcq) -
workingMtMn,_,_,_,_,0),
dline(P,D),
resource(Mt, Tool,Mn,Time_req),
Cost =D * Time_req,!.

268

-

part_finished :- working(Mt,Mn,Tool,P,Name,Seq, Time_left),
Time_left >0,
adj_time(Mt,Mn,Tool,P,Name,Seq,Time_left,New_time),
New_time =0,
not(ready(P,Name ,Mt,Tool,_,_,_)),
check_working(Mt,P,Name),
do_retractwt(P,Name,Mt),
fail,!.

part_finished :- !.

check_working(Mt,P,Name) :-
working(Mt,_,_,P,Name,_,Time),Time 0,!,fail.
check_working(_,_,) :- !.

do_retractwt(P,_,c) :-

k retract(waiting(P,Name,c,New_mt,New_tool,New_quan)),
Org_quan = New_quan,
1 assert(ready(P,Name,New_mt,New_tool,Org_quan,New_quan,1)),!.

7 do_retractwt(P,Name,Mt) :-

1 retract(waiting(P,Name,Mt,New_mt,New_tool,New_quan)),
Org_quan = New_quan,

* assert(ready(P,Name,New_mt,New_tool,Org_quan,New_quan,1)),!.

adj_time(Mt,Mn,Tool P,Name,Seq,Time_left, New_time) :-
retract(working(Mt,Mn,Tool,P,Name,Seq, Time_left)),
New_time = Time_left - 1,
asserta(working(Mt,Mn,Tool,P,Name,Seq,New_time)),!.

! print_report :- nl,clock(Time),

' write("clock period - "),write(Time),nl,
write("working processes - "),nl,
not(print_working),!.

print_working :- working(A,B,C,D,N,E,F),F >0,

write(D),write(" ™),
write(N),write(" "),
write(A),write(" "),
write(C),write(" "),
write(B),write(" "),
write(E),write(" ™),
write(F),nl fail,!.

269

/* Process Planning Exception Rules follow */

check_pp_exceptions(_) :-
consult("ppexcept.dat”),fail,!.

check_pp_exceptions(_) :-
ppdata(_v_n_t_vTOI l—’—'—i—’—!—!—!—!—!—)]
pp_except(tolerance,Best_tol),
str_real(Best_tol,Bt),
str_real(Tol,T),
T < Bt,
not(exception(tolerance,Tol,Best_tol)),
assert(exception(tolerance,Tol,Best_tol)),fail,!.

check_pp_exceptions() :-
ppdata(_,_,_,_, . ., , . ,_, Rad,_,_,),
pp_except(radius,Bad_rad),
Rad = Bad_rad,
not(exception(radius,Rad,Bad_rad)),
assert(exception(radius,Rad,Bad_rad)),Fail,!.

check_pp_exceptions(Name) :-
exception(_,_,),
display_pp_exceptions(Name),
retract_pp,
retract_pp_rest,
! fail.

check_pp_exceptions(_) :- !.

270

display_pp_exceptions(Name) :-
makewindow(5,4,15,"Exception Report",3,10,19,60),
gotowindow(S5),
gwrite(0,25,"Memorandum",1,0),
gwrite(1,2,"To: Design Department”,1,0),
gwrite(2,2,"From: Process Planning Department”,1,0),
gwrite(3,2,"Subject: Exceptions on design project”,1,0),
Names = Name,
gwrite(3,40,Names,4,0),
assert(menuno(5)),
write_messages,
retract(menuno(_)),
gwrite(15,5,"Hit ‘ENTER’ to continue”,4,0),
readchar(_),!.

write_messages :-
exception(Type,Val,Std),
message(Type,Val,Std),
get_line_no(_),fail,!.

write_messages :- !.

message(tolerance,Tol,Best_tol) :-
get_line_no(N),
gwrite(N,2,"The value of the",1,0),
gwrite(N,19,"tolerance” 4,0),
gwrite(N,29,"for this project is",1,0),
get_line_no(N1),
gwrite(N1,2,"too restrictive. A value of ",1,0),
| Bt = Best_tol, T = Tol,
str_len(Bt,Bt_len),
gwrite(N1,30,Bt,4,0),
Pos = 31 + Bi_len,
gwrite(N1,Pos,"or greater is far less",1,0),
get_line_no(N2),
gwrite(N2,2,"costly than the value”,1,0),
gwrite(N2,24,T,4,0),!.

271

message(radius,Rad,_) :-
get_line_no(N),
gwrite(N,2,"The value of the",1,0),
gwrite(N, 19,"radius",4,0),
gwrite(N,26,"for this project is”,1,0),
get_line_no(N1),
gwrite(N1,2,"too expensive. A value of “,1,0),
gwrite(N1,28,"1.5",4,0),
gwrite(N1,32,"or",1,0),
gwrite(N1,35,"1.75",4,0),
gwrite(N1,40,"is far less",1,0),
get_line_no(N2),
gwrite(N2,2,"costly than the value”,1,0),
R =Rad,
gwrite(N2,24,R 4,0),!.

message(machine,Mt,Msg) :-
get_line_no(N),
gwrite(N,2,"The machine you have requested, ",1,0),
machine_type(Mt,Mname),
Mits = Mname,
gwrite(N,34,Mts,4,0),
get_line_no(N1),
gwrite(N1,2,"for this project is",1,0),
get_line_no(N2),
Msgs = Msg,
gwrite(N2,2, Msgs 4,0),
get_line_no(N3),
gwrite(N3,2,"Please revise your design and resubmit.”,1,0),!.

/* Scheduling Exception Rules follow */

check_sched_exceptions :-
consult("scexcept.dat”),fail,!.

check_sched_exceptions :-
readY(_’_,Mt,_,_,_,_),
sched_except(machine, Mt,Msg),
not(exception(machine,Mt,Msg)),
assert(exception(machine,Mt,Msg)),fail,!.

272

check_sched_exceptions :-
waiting(_, ,_Mt,_,_),
sched_except(machine,Mt,Msg),
not(exception(machine, Mt,Msg)),
assert(exception(machine Mt,Msg)),fail,!.

check_sched_exceptions :-
exception(_,_,),
display_sched_exceptions,
retract_sched,! fail.

check_sched_exceptions :- !.

display_sched_exceptions :-
makewindow(5,4,15,"Exception Report”,3,10,19,60),
gotowindow(5),
gwrite(0,25,"Memorandum®,1,0),
gwrite(1,2,"To: Design Department”,1,0),
gwrite(2,2,"From: Scheduling Department”,1,0),
gwrite(3,2,"Subject: Exceptions on design project”,1,0),
1 gwrite(3,40,"top1",4,0),
assert(menuno(5)),
write_messages,
4 retract(menuno(_)),
gwrite(15,5,"Hit ‘ENTER’ to continue”,4,0),
readchar(),!.

gwrite(R,C,S,Color,0):-
cursor(R,C),attribute(Color),write(S).
| gwrite(_,_,"",_,1):-1.
gwrite(R,C,S,Color,1):-
cursor(R,C),attribute(Color),
frontchar(S,Ch,S1),write(Ch),
R1=R+1,
gwrite(R1,C,S1,Color,1).

repeat.
repeat ;- repeat.

273

setEGApalette(L):-
X="012345678901234567",
ptr_dword(X,Segment,Offset),
putinlist(L,Segment,Offset),
bios($10,reg($1002,0,0,0ffse1,0,0,0,Segment),).

putinlist([],_,_):-!.

putinlist({Byte!T],Segment,Offset):-
membyte(Segment,Offset,Byte),
Offset2=0Offset+1,
putinlist(T,Segment,Offset2).

B. DATA-ORIENTED PROTOTYPE LISTING

code = 3200
project "datadr”
domains

file = dat

1 = symbol

n = integer
r =real

include "tdoms.pro”
include "gdoms.pro"

database

menuno(row)
i schema(l,row,col,row,col,})
schema_object(l,n,n,n,n)
type(L.)
h num_props(l,n)

selected(l)
1 L design(l,L1)
kind_of(1,1)

opened(l,l)
saved(l)
product(l,l,n)
clock(n)
ready(n,l,1,n,n,n,n)

274

SN

waiting(n,1,1,1,n,n)
quantity(n)
working(l,n,n,n,},n,n)
least(n,n,L1,n,n,n)
dline(n,n)
resource(l,n,n,n)
machine_type(l,D)
machine_used(l,l)
pp_except(l,l)
sched_except(l,1,1)
key(char)
pcolor(n,n)
locate(l,n,n)
trans(l,n,n,n,n,n)

global Predicates

/* (Row1,Coll,Row2,Col2,LineColor,FillColor,Fill)
Range for Rows: 0-31999
Range for Columns: 0-31999
Fill =0 A box will be drawn with color LineColor
but not filled
=1 A box will be drawn with color LineColor
and filled with color LineColor*/

predicates

gwrite(row,col,string,color,integer)
nondeterm repeat
setEGApalette(integerlist)
putinlist(integerlist,integer,integer)
wfs(char)

wfs2

wait(n)

set_pal

go

design_phase

scheduling

get_menu(n)

write_menu(l,color)

menu(n,l)
get_mouse_position(n,n)

275

action(n,n,n,l)
highlight(row,color,l)
color_of(l,color)
draw_schema
highlight_type(color,])
retract_others
retract_design
write_objects(l,])
get_line_no(row)
reset_line_no
create_blanks(n,l)
get_input(ll)
input_props(l,1)
input_props2(l,n,I)
write_props(l)
change_data(l,l)
input_change(l,1)
input_change2(l,n,1)
write_data(l)
design_data(l,1,1)
retract_assert(1,1,1,1)
load_schema(l)
load_design(l)
save_design(l)
check_quit(l)
check_quit2(1,1)
create_pp_data
check_cut(,l,n,1D)
check_screw(l,l,n,1,1)
check_bracket(l,1,n,1,1)
check_weld(l,1,n,L,1)
check_assembly(l,1,n,1,1)
retract_pp
retract_pp_rest
part_one
print_report

finished
still_working

start

do_retractc(n)
available

can_sched

276

e —— —w -~ —

do_retractl(n,n,l,I,n,n,n)
do_retractw(l,n,n,n)
avail(n,],1,n,n,n,n)
avail2(n,1,1,n,n,n,n,n,n)
get_next

fig _cost(n,l,l,n,n,n,n)
part_finished
do_retractwt(n,],])
retract_duplicates(n,,1)
adj_time(l,n,n,n,l,n,n,n)
check_working(l,n,1)
retract_sched
print_working
message(l,1,1)
draw_machines
draw_mach2
display_ready(n,i,n,n)
display_working
display_finished(n,])
display_start
clear_start(n)
clear_queue(l,n)
clear_gs(l,n,n)
clear_mach(l,n)
draw_queues
draw_trans(n,n,n,n,n)
display_trans(l,n,n)
validate_data(l,])
1emove_windows

-nclude "color.def™
include "cadmouse.pro"

goal
go.

27

clauses

color_of(menu,6).
color_of(status,4).
color_of(highlight,15).
color_of(high_sch_text,12).
color_of(schema_text,1).
color_of(schema_box,11).
color_of(schema_conn,6).

go :- repeat,
design_phase,
remove_windows,
scheduling,!.

design_phase :-
part_one,
assert(menuno(1)),
get_menu(1),
gotowindow(1),
repeat,
gotowindow(4),
clearwindow,
gwrite(0,1,"Select a Command from the Menu Window",4,0),
get_mouse_position(X,Y),
action(1,X,Y,0),
C ="Quit",
create_pp_data,
retract_sched,!.

278

part_one :-
text,
consult("ppexcept.dat"),
consult("scexcept.dat”),
consult("schedinf.dat"),
graphics(5,1,0),
set_pal,
makewindow(1,4,15,"Data Oriented System",0,0,19,54),
makewindow(2,4,4,"Menu",0,58,11,19),
makewindow(3,4,13,"Data",13,55,12,25),
makewindow(4,4,9,"Status",19,0,6,54),
gotowindow(1),
init_mouse,
show_mouse,
position_mouse(30,440),!.

b e e -

scheduling :-

makewindow(1,104,1,"Shop Floor Simulation",0,0,25,80),
shiftwindow(1),
gwrite(2,45,"check-in",12,0),
gwrite(6,2,"cutting",10,0),
gwrite(7,2,"machines",10,0),
gwrite(6,70,"boring",10,0),
gwrite(7,70,"machines",10,0),
gwrite(16,2,"welding",10,0),
gwrite(17,2,"machines",10,0),
gwrite(16,70,"assembly",10,0),
gwrite(17,70,"stations",10,0),
gwrite(22,45,"finished",12,0),
consult("simdata.dta"),
consult("schdata.dta"),
consult("sched.dat™),
draw_mach2,
not(draw_queues),
assert(clock(0)),
assert(key(’s’)),
openwrite(dat,"simtest.doc”),
repeat,

writedevice(dat),

start,

finished,
closefile(dat),
wis(),
writedevice(screen),!.

remove_windows :- removewindow,fail,!.
remove_windows :- .

get_menu(N) :-

gotowindow(2),
clearwindow,
retract(menuno(_)),
assert(menuno(1)),
color_of(menu,Color),
repeat,

menu(N,X),

write_menu(X,Color),

X = "Quit",!.

280

>

write_menu(X,Color) :- retract(menuno(R)),X1 = X,
gvrite(R,1,X1,Color,0),
R1=R+1,
assert(menuno(R1)),!.

get_mouse_position(C,R) :-
repeat,
bios(51,reg(3,0,0,0,0,0,0,0),reg(_,Button,Col,Row,_,_,_,)),
Button >0,
C = (Col / 640) * 80,
R = (Row /350) * 24,!.

wfs(C) :- keypressed,readchar(C),!.
wfs(C) :- wait (2000),wfs(C).

wait(0) :- !
wait(N) :- N1 = N-1, wait(N1).

action(_,X,_,"Continue") :-
X>58,X<77,
position_mouse(30,440),fail,!.

action(1,X,2,C) :- X>58,X<77,
color_of(highlight,Color),
highlight(1,Color,"Load C Schema"),
gotowindow(4),
clearwindow,
gwrite(0,1,"Enter the filename: ",4,0),
readdevice(keyboard),
readln(Fname),
load_schema(Fname),
color_of(menu,Mcolor),
highlight(1,Mcolor,"Load C Schema"),
C = "Continue",!.

281

o ————

w

v - P g—

action(1,X,3,C) :- X>58,X <77,

opened(design,),

color_of(highlight,Color),
highlight(2,Color,"Lcad Design Data”),
gotowindow(4),

clearwindow,

gwrite(0,1,"A design data file is already opened",1,0),
gwrite(2,1,"Press ‘ENTER’ to continue”,4,0),
readchar(),

color_of(menu,Mcolor),
highlight(2,Mcolor,"Load Design Data"),

C = "Continue",!.

action(1,X,3,C) :-X > 58, X <77,

color_of(highlight,Color),
highlight(2,Color,"Load Design Data"),
gotowindow(4),

clearwindow,

gwrite(0,1,"Enter the filename: ",4,0),
readdevice(keyboard),

readin(Fname),

load_design(Fname),
color_of(menu,Mcolor),
highlight(2,Mcolor,"Load Design Data"),
C ="Continue",!.

action(1,X,4,0) :-X > 58, X < 77,

color_of(highlight,Color),
highlight(3,Color,"Update Data"),
get_menu(2),
repeat,
gotowindow(4),
clearwindow,
gwrite(0,1,"Select a Type or ‘Quit’",4,0),
get_mouse_position(X2,Y2),
action(2,X2,Y2,C2),
C2 = "Quit",
get_menu(1),
C = "Continue",!.

282

action(1,X,5,C) :- X > 58, X < 77,
color_of(highlight,Color),
highlight(4,Color,"Save Design Data"),

f . gotowindow(4),
clearwindow,

| gwrite(0,1,"Enter the filename: ",4,0),

") readdevice(keyboard),
readln(Fname),
save_design(Fname),
color_of(menu,Mcolor),
highlight(4,Mcolor,"Save Design Data"),
C = "Continue",!.

action(1,X,7,C) - X > 58, X < 77,
] check_quit(C),!.

k action(2,Y,X,C) :-
schema_object(Type,Xmin, Y min,Xmax, Y max),
gotowindow(3),
r clearwindow,
4 X > Xmin, X < Xmax, Y > Ymin, Y < Ymax,
assert(selected(Type)),
position_mouse(30,440),
color_of(high_sch_text,Color),
highlight_type(Color, Type),
repeat,
get_menu(3),
gotowindow(4),
clearwindow,
gwrite(0,1,"Select a Command from the Menu Window" 4,0),
get_mouse_position(X2,Y?2),
action(3,X2,Y2,C2),
C2 = "Quit",
color_of(schema_text,Tcolor),
highlight_type(Tcolor,Type),
retract(selected(Type)),
get_menu(2),
C ="Continue",!.

action(2,X,5,0):-X>58,X <77,
C = "Quit",!.

283

action(3,X,2,C) :- X >58,X <77,
gotowindow(4),
clearwindow,
selected(Type),
gwrite(0,1,"Enter name of object of type",4,0),
Types = Type,
gwrite(0,30,Types,1,0),
str_len(Type,Len),
Input_pos = 30 + Len,
gwrite(0,Input_pos," ",9,0),
readln(Name),
get_input(Name,Type),
makewindow(3,4,13,"Data",13,55,12,25),
gotowindow(3),
clearwindow,
C ="Continue",!.

action(3,X,3,C) - X >58,X <77,
gotowindow(4),
clearwindow,
selected(Type),
not(kind_of(_,Type)),
gwrite(1,1,"No data exists for that type",1,0),
gwrite(2,1,"press ‘ENTER’ to continue",4,0),
readchar(_),
C ="Continue",!.

action(3,X,3,0) :- X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
gwrite(0,1,"Enter name of object to change:",4,0),
gwrite(0,31," ",1,0),
readln(Name),
change_data(Name,Type),
makewindow(3,4,13,"Data",13,55,12,25),
gotowindow(3),
clearwindow,
C = "Continue",!.

284

R y— v A

action(3,X,4,C) :- X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
not(kind_of(_,Type)),
gwrite(1,1,"No data exists for that type”,1,0),
gwrite(2,1,"press ‘ENTER’ to continue” 4,0),
readchar(),
C = "Continue",!.

action(3,X,4,C) :-X > 58, X <77,
gotowindow(4),
clearwindow,
selected(Type),
makewindow(3,4,7,"View Data",13,55,12,25),
repeat,

kind_of(Object_name,Type),

gotowindow(3),

clearwindow,

reset_line_no,

gwrite(0,1,"name:",2,0),0bjs = Object_name,

gwrite(0,7,0bjs,9,0),

write_objects(Object_name, Type),
gotowindow(4),

clearwindow,

gwrite(0,1,"Press ‘ENTER’ to continue or ‘q’ to quit ",4,0),

readchar(Quit),

Quit="q’,
makewindow(3,4,13,"Data",13,55,12,25),
gotowindow(3),
clearwindow,

C ="Continue",!.

action(3,X,6,C) :-X > 58, X <77,
C = "Quit",!.

check_quit(C) :-
saved(),
C = "Quit",!.

check_quit(C) :-
gotowindow(4),
clearwindow,
gwrite(0,1,"The design data has not been saved",1,0),
gwrite(1,1,"Press s’ to save or ‘q’ to quit ",4,0),
readln(Quit),
check_quit2(Quit,C),!.

check_quit2(q,"Quit") :- !.
check_quit2(_,"Continue") :-!.

highlight(Row,Color, Text) :-
gotowindow(2),Texts = Text,
gwrite(Row,1,Texts,Color,0),!.

highlight_type(Tcolor,Title) :-
schema(text,X,Y,_,_,Title),
str_len(Title,Len),
Y4=Y + (8- (Len/2)),
X4=X,
gotowindow(1), Titles=Title,
gwrite(X4,Y4,Titles, Tcolor,0),!.

draw_schema :-
color_of(schema_text,Tcolor),
schema(text,X,Y, ,_,Title),
str_len(Title,Len),
Y4=Y + (8- (Len/2)),
X4=X,
gotowindow(1), Titles=Title,
gwrite(X4,Y4,Titles, Tcolor,0),
X2=X-1,X3=X+3,Y2=Y+2,Y3=Y+15,
assert(schema_object(Title,X2,Y2,X3,Y3)),fail,!.

draw_schema :-
color_of(schema_box,Bcolor),
schema(box,X,Y,X1,Y1,),
X2=X,Y2=Y,X3=X1,Y3=Y]l,
box(X2,Y2,X3,Y3,Bcolor,Bcolor,0),fail,!.

286

draw_schema :-
color_of(schema_conn,Ccolor),
schema(conn X,Y . X1,Y1,),
X2=X,Y2=Y,X3=X1,Y3=Y1,
line(X2,Y2,X3,Y3,Ccolor),fail,!.

draw_schema.

retract_others :- retract(menuno(_)),fail,!.
retract_others :- retract(schema(_,_, ,_, ,)).fail,!.

retract_others :- retract(schema_object(_,_,_, ,)).fail,!.

retract_others :- retract(type(_,_)),fail,!.
retract_others :- retract(num_props(_,_)),fail,!.
retract_others :- retract(selected()),fail,!.
retract_others :- retract(opened(_,_)),fail,!.
retract_others :- retract(saved()),fail,!.
retract_others :- retract(sched_except(_,_,)),fail,!.
retract_others :- retract(machine_used(_,_)),fail,!.
retract_others :- retract(pp_except(_,_)).fail,!.
retract_others :- retract(key()),!.

retract_others :- !.

retract_design :- retract(design(_,_,_)),fail,!.
retract_design :- retract(kind_of(_,_)),fail,!.
retract_design :- !.

retract_pp :- retract(product(_,_,_)),fail,!.
retract_pp :- retract(pp_except(_,_)),fail,!.
retract_pp :- !.

retract_pp_rest :- |

retract_sched :- retract(waiting(_,_,_,_,_,_)),fail,!.
retract_sched :- retract(ready(_,_, , . ,_,)).fail,!.
retract_sched :- retract(dline(_,_)).fail,!.
retract_sched :- retract(machine_type(_,_)).fail,!.
retract_sched :- retract(clock()),fail,!.

retract_sched :- retract(resource(_,_,_,)),fail,!.
retract_sched :- retract(sched_except(_,_,_)).fail,!.
retract_sched :- retract(working(_,_,_,_,_,_,)).fail,!.
retract_sched :- !.

287

write_objects\Obj, Type) :-
ty pe(Type,Prop),
design_data(Obj,Prop,Val),
get_line_no(N),Props=Prop,
gwrite(N, 1,Props,12,0),
str_len(Prop,Len),
Write_pos =Len + 1,
gwrite(N,Write_pos,":",12,0),
Write_pos2 = Len + 3,Vals=Val,
gwrite(N,Write_pos2,Vals,1,0),fail,!.

write_objects(_,_) :- !.

get_input(Name, Type) :-
kind_of(Name,Type),
gotowindow(4),
gwrite(1,1," An object already exists by that name",1,0),
gwrite(2,1,"press ‘ENTER’ to continue”,4,0),
readchar(),!.

get_input(_,_) :-
retract(saved()),fail,!.

get_input(Name,Type) :-
assert(kind_of(Name, Type)),
makewindow(3,4,7,"Add Data",13,55,12,25),
gotowindow(3),
clearwindow,
reset_line_no,
gwrite(0,1,"name:",2,0),
Objs = Name,
gwrite(0,7,0bjs,9,0),
write_props(Type),
reset_line_no,
input_props(Name,Type),!.

input_props(Name,Type) :-
type(Type,Prop),Prop "name”,
input_props2(Prop,Len, Value),
assert(design(Name,Prop,Value)),
gotowindow(3),
Write_pos = Len + 3,
get_line_no(N),
Values = Value,
gwrite(N,Write_pos, Values, 1,0),fail,!.

input_props(_,_) :- \.

input_props2(Prop,Len,Value) :-

Props = Prop,

repeat,
gotowindow(4),
clearwindow,
gwrite(0,1,"Enter” 4,0),
gwrite(0,7,Props,1,0),
str_len(Prop,Len),
Input_pos =Len +7,
gwrite(0,Input_pos,": “,4,0),
readin(Value),
validate_data(Prop,Value),!.

write_props(Type) :-
type(Type,Prop),Prop "name",
Props = Prop,
get_line_no(N),
gwrite(N,1,Props,12,0),
str_len(Prop,Len),
Write_pos = Len + 1,
gwrite(N,Write_pos,":",12,0),fail,!.

write_props(_) :- !.

change_data(Name,_) :-
gotowindow(4),
not(design(Name,_,_)),
gwrite(1,1,"No object exists by that name",1,0),
gwrite(2,1,"press ‘ENTER’ to continue”,4,0),
readchar(_),!.

289

v —

e

change__data(Name,Type) -
gotowindow(4),
not(kind_of(Name,Type)),
gwrite(1,1,"Object is not correct type",1,0),
gwrite(2,1,"press ‘ENTER’ to continue" 4,0),
readchar(),!.

change_data(_,):-
retract(saved(_)),fail,!.

change_data(Name, Type) :-

makewindow(3,4,7,"Change Data",13,55,12,25),

gotowindow(3),
clearwindow,

reset_line_no,
gwrite(0,1,"name:",2,0),
Objs = Name,
gwrite(0,7,0bjs,9,0),
write_data(Name),
reset_line_no,
input__change(Name,Type),!.

input_change(Name,Typc) -

type(Type,Prop),Prop "name",
input_changeZ(Prop,Lcn,NewvaJuc),
retract_assert(Name,Prop,Value,Newvalue),
gotowindow(3),

Write_pos = Len + 3,

get_line_no(N),

str_len(Value,Vien),
create_blanks(Vlen,Blank),

Blanks = Biank,
gWritc(N,Writc_pos,Blanks,l,O),
Values = Newvalue,

gwrite(N ,Write_pos,Valucs,l,0),fai1,!.

input_change(_,_) :- !.

N

input_change2(Prop,Len,Newvalue) :-

Props = Prop,

repeat,
gotowindow(4),
clearwindow,
gwrite(0,1,"Enter" 4,0),
gwrite(0,7,Props,1,0),
str_len(Prop,Len),
Input_pos =Len + 7,
gwrite(0,Input_pos,": ",4,0),
readin(Newvalue),
validate_data(Prop,Newvalue),!.

write_data(Name) :-
kind_of(Name,Type),
type(Type,Prop),
dcsign_data(Name,Prop,Val),Prop "name",
Props = Prop,Vals = Val,
get_line_no(N),
gwrite(N, 1,Props,12,0),

p str_len(Prop,Len),

Write_pos = Len + 1,

gwrite(N,Write_pos,":",12,0),

L Write_pos2 = Len + 3,

gwrite(N,Writc_posz,Vals,l,O),
fail,!.

write_data(_) :- !.
4 design_data(N ame,Prop,Val) :- design(Name,Prop, Val),!.

retract_assert(N ame,Prop,Value,Newvalue) :-
retract(design(Name,Prop, Value)),
assert(design(Name,Prop,Newvalue)),! .

load_schema(Fname) :-
opened(schema,Fname),

] gotowindow(4),

clearwindow,

gwrite(0,1,"This schema data has already been loaded", 1,0),

gwrite(2,0,"Press ‘ENTER’ to continue",4,0),

readchar(),!.

291

load_schema(Fname) :-
1 not(existfile(Fname)),
gotowindow(4),
+ clearwindow,

gwrite(0,1,"This schema file doesn’t exist",1,0),
[gwrite(2,0,"Press ‘ENTER’ to continue" 4,0),
readchar(),!.

| load_schema(Fname) :-
consult(Fname),
assert(opened(schema,Fname)),
gotowindow(1),
draw_schema,Fnames = Fname,
gwrite(0,1,"Schema File:",4,0),
gwrite(0,14,Fnames,1,0),!.

load_design(Fname) :-
opened(design,Fname),
gotowindow(4),
clearwindow,
gwrite(0,1,"This design data has already been loaded",1,0),
gwrite(2,0,"Press ‘ENTER’ to continue”,4,0),
readchar(_),!.

load_design(Fname) :-
not(existfile(Fname)),
gotowindow(4),
clearwindow,
gwrite(0,1,"This data file doesn’t exist",1,0),
gwrite(2,0,"Press ‘ENTER’ to continue”,4,0),
readchar{),!.

s ey . et g M A — et . o "1

load_design(Fname) :-
existfile(Fname),
consult(Fname),
assert(opened(design,Fname)),
assert(saved(Fname)),

. gotowindow(1),

X gwrite(1,1,"Data File:" 4,0),

Fnames = Fname,

e gwrite(1,14, Fnames, 1,0),!.

' save_design(Fname) :-
e saved(Fname),
gotowindow(4),
! clearwindow,

i

gwrite(0,1,"The design data has already been saved",1,0),
gwrite(2,0,"Press ‘ENTER’ to continue”,4,0),
readchar(),!.

save_design(Fname) :-
save("temp.dat”),
retract_others,
save(Fname),
assert(saved(Fname)),
retract_design.
consult("temp.dat”),!.

get_line_no(N) :-
retract(menuno(N)),
NI=N+1,
assert(menuno(N1)),!.

reset_line_no :-
retract(menuno(_)),
assert(menuno(1)),!.

create_blanks(0,"").

create_blanks(1," ").

create_blanks(N,Blanks) :- N1 =N-1,
create_blanks(N1,Nblanks),
concat(Nblanks," ",Blanks),!.

293

2

"

t B

menu(1,"Load C Schema”).
menu(1,"Load Design Data").
menu(1,"Update Data").
menu(1,"Save Design Data").
menu(1,"").

menu(1,"Quit™).

menu(2,"").
menu(2,"").
menu(2,"").
menu(2,"Quit").

menu(3,”Add data”).
menu(3,"Change data").
menu(3,"View data™).
menu(3,"").
menu(3,"Quit").

/* Process Planning Rules follow */

create_pp_data :-
assert(product(top1,top,15)),fail,!.

create_pp_data :-
kind_of(Name,top),
product(Name,_,Qty),
assert(ready(1,Name,sa,0,1,1,1)),
check_cut(tcut,Name,Qty,sa,Locl),
check_screw(tscrew,Name,Qty,Loc1,Loc2),

check_bracket(tbracket,Name,Qty,Loc2,Loc3),

check_weld(tweld Name,Qty,Loc3,Loc4),

check_assembly(tassemble,Name,Qty,Loc4,_),fail,!.

create_pp_data :-
kind_of(Nme,top),
product(Nme,_,Qty),
kind_of(Name,leg),
assert(ready(1,Name,sa,0,1,1,1)),
check_cut(lcut,Name,Qty,sa,Loc1),
check_screw(lscrew,Name,Qty,Loc1,Loc2),
check_bracket(lbracket,Name,Qty,Loc2,Loc3),
check_weld(Iweld,Name,Qty,Loc3,Loc4),

check_assembly(lassemble,Name,Qty,Loc4,_),fail,!.

create_pp_data :-
retract_others,
retract_design,
retract_pp,
retract_pp_rest,
save("sched.dat™),!.

check_cut(tcut,Name,Qty,Oldl,a) :-
assert(waiting(1,Name,Oldl,a,1,Qty)),!.
check_cut(tcut,_,_,0ld1,01dl) :-!.

check_cut(lcut,Name,Qty,Old},a) :-
assert(waiting(1,Name,Oldl,a,2,Qty)),!.
check_cut(lcut,_, ,01d1,01dl) :- !.

check_screw(tscrew,Name,Qty,Oldl,e) :-
design(_,connector,Conn),
design(Conn,_,screw),
concat(Old],"e",Trans),
assert(waiting(1,Name,Oldl, Trans,0,1)),
assert(waiting(1,Name, Trans,e,1,Qty)),!.

check_screw(tscrew,_,_,Old1,0IdI) :-!.

check_screw(Iscrew,Name,Qty,Oldl,e) :-
design(Name,connector,Conn),
design(Conn,_,screw),
concat(Oldl,"e",Trans),
assert(waiting(1,Name,Oldl, Trans,0,1)),
assert(waiting(1,Name, Trans,e,2,Qty)),!.

check_screw(Iscrew,_,_,0Old1,01dl) :-!.

wa L

check_bracket(tbracket,Name,Qty,Old},b) :-
design(_,connector,Conn),
design(Conn,_,bracket),
concat(Oldl,"b", Trans),
assert(waiting(1,Name,Oldl,Trans,0,1)),
assert(waiting(1,Name, Trans,b,1,Qty)),!.
check_bracket(tbracket,_,_,01d1,0ldl) :-!.

check_bracket(lbracket,Name,Qty,Oldl,b) :-

design(Name,connector,Conn),
design(Conn,_,bracket),
concat(Oldl,"b",Trans),
assert(waiting(1,Name,Old], Trans,0,1)),

assert(waiting(1,Name, Trans,b,2,Qty)),!.
check_bracket(Ibracket,_, ,0l1d1,0i1dl) :-!.

check_weld(tweld,Name,Qty,Oldl,c) :-

design(_,connector,Conn),
design(Conn,_,weld),
concat(Oldl,"c",Trans),
assert(waiting(1,Name,0Oldl, Trans,0,1)),

assert(waiting(1,Name, Trans,c,1,Qty)),!.
check_weld(tweld,_,_,01d1,01d]) :-!.

check_weld(Iweld,Name,Qty,Oldlc) :-

design(Name,connector,Conn),
design(Conn,_,weld),
concat(Oldl,"c",Trans),
assert(waiting(1,Name,Oldl,Trans,0,1)),

assert(waiting(1,Name, Trans,c,2,Qty)),!.
check_weld(lweld,_,_,0l1d1,01dl) :- !.

check_assembly(tassemble,Name,Qty,Oldl,d) :-

design(_,connector,Conn),
design(Conn,_,screw),

concat(QOldl,"d", Trans),
assert(waiting(1,Name,Oldl, Trans,0,1)),

assert(waiting(1,Name,Trans,d,1,Qty)),!.

LN

check_assembly(tassemble,Name,Qty,Oldl.d) :-
design(_,connector,Conn),
design(Conn,_,bracket),
concat(Oidl,"d",Trans),
assert(waiting(1,Name,Oldl, Trans,0,1)),
assert(waiting(1,Name, Trans,d,1,Qty)),!.

check_assembly(tassemble,_,_,0l1d1,0ldl) :-!.

check_assembly(lassemble,Name,Qty,Oldl,d) :-
design(Name,connector,Conn),
design(Conn,_,screw),
concat(Oldl,"d", Trans),
assert(waiting(1,Name,Oldl,Trans,0,1)),
assert(waiting(1,Name,Trans,d,2,Qty)),!.

check_assembly(lassemble,Name,Qty,Oldl,d) :-
design(Name,connector,Conn),
design(Conn,_,bracket),
concat(Oldl,"d",Trans),
assert(waiting(1,Name,Oldl, Trans,0,1)),
assert(waiting(1,Name,Trans,d,2,Qty)),!.

check_assembly(lassemble,_,_,0Old1,0ldl) :-!.

/* Scheduling Rules follow */

finished :- not(ready(_,_._,_»_,_».))>
nOt(Waiting(_,_,...,_,_,_)),
not(still_working),!.

still_working :- working(_,_,_,_,_,_,Time),Time > 0.

297

vt r b e ———

start ;- do_retractc(T),
TI=T+1,
display_start,
box(2000,27000,4500,32000,11,11,1),

; writedevice(screen),

! gwrite(2,69,"Time",6,0),
str_int(Time,T1),
gwrite(2,74,Time,12,0),
assert(clock(T1)),
available,
print_report,
writedevice(screen),
not(display_working),
wis2,
part_finished,!.

do_retractc(T) :- retract(clock(T)),!.

available :- not(can_sched),!.

available :- repeat,
get_next,
do_retracti(Cost,P,Name,Mt,Tool, Mn,Time),
do_retractw(Mt,Mn,0,Cost),
avail(P,Name Mt,Tool,Mn,Time,Cost),
not(can_sched),!.

can_sched :- ready(P,_.c, _._,_,_),
not(waiting(P,_,_.c,_,)),
WOT| kiDg(C,_a_:_,_,_.O), .

can_sched :- ready(P,_d,_,_._,),
not(waiting(P,_,_.d,_._)),

f working(@,_,_,_,_,_,0),!.
can_sched :- ready(_,_Mt,_,_, ,),
Mt "¢", Mt <> "d",

WOT king(Mts_,_,_,_’_,o)a L

F do_retractl(Cost,P,Name ,Mt,Tool,Mn,Time) :-
retract(least(Cost,P,Name ,Mt, Tool,Mn,Time)),!.

do_retractw(_,_,_,9999) :- \.
do_retractw(Mt,Mn,D,_) :- retract(working(MtMn,_,_, , ,D)),!.

avail(_,_, , ., , ,9999):-!.

avail(P,Name ,Mt,Tool,Mn, Time,_) :-
availZ(P,Name,Mt,Tool,Mn,Time,Org_quan,Quan,ch),
Quanl =Quan - 1,
Seql =Seq + 1,
display_ready(P,Mt,Org_quan,Seq),
Quanl >0,
assertz(ready(P,Namc,Mt,Tool,Org_quan,Quanl,Seql)),
retract_duplicates(P,Name,Mt),!.

avail(_, , , , .,):-1L

availZ(P,Name,Mt,Tool,Mn,Timc,Org_quan,Quan,Seq) -
retmct(ready(P,Namc,Mt,Tool,Org_quan,Quan,Seq)),
assert(working(Mt,Mn,Tool,P,Name,Seq, Time)),
clear_qgs(Mt,P,Quan),!.

retract_duplicates(P,Name,c) :-
l'cady (P.Namelc,_,_,_,_),
Name2 <> Name,
retract(ready(P,Name2,c,_, , ,)),fail,!.
retract_duplicates(P,Name,d) :-
ready(P,Name2,d, ,_, ,),
Name2 <> Name,
retract(ready(P,Name2,d,_, ,_,)).fail,!.
retract_duplicates(_,_,) :- .

get_next :- assert(least(9999,0,x,x,0,0,0)),
ready(P,Name,c,Tool,_,_,),
not(waiting(P,_,_,C,..,_)),
fig_cost(P,Name,c,Tool,Cost,Mn, Time_req),
least(X,Y,N,Z,A,B,C),
Cost< X,
do_retract!(X,Y,N,Z,A,B,C),
asscrt(lcast(Cost,P,Namc,c,Tool,Mn,Time_req)),
fail,!.

get_next :-
ready(P,Name,d,Tool,_,_,),
not(waiting(P,_,_.d,_.)),
fig_cost(P,Name,d,Tool,Cost,Mn,Time_req),
least(X,Y,N,Z,A,B,C),
Cost < X,
do_retractiX,Y,N,Z,A,B,C),
assert(least(Cost,P,Name,d,Tool,Mn,Time_req)),
fail,!.

get_next :-

! ready(P,Name Mt,Tool,_,_,_),
Mt <> "¢", Mt < "d",
fig_cost(P,Name,Mt,Tool,Cost,Mn,Time_req),
least(X,Y,N,Z,A,B,C),

_ Cost < X,

‘ do_retractl(X,Y,N,Z,A,B,C),

. assert(least(Cost,P,Name ,Mt,Tool,Mn,Time_req)),
fail,!.

get_next :- L.

| fig_cost(P,Name,Mt,Tool,Cost,Mn,Time_req) :-
workingMtMn,_,_,_, ,0),
working(Mt,_,_,P,Name, ,Time),Time >0,
dline(P,D),
resource(Mt, Tool,Mn,Time_req),
Cost =D * Time_req - 3,!.

fig_cost(P,Name,Mt,Tool,Cost,Mn,Time_req) :-
working(Mt,Mn,_,_,Name,_,0),
dline(P,D),
resource(Mt, Tool,Mn,Time_req),
Cost =D * Time_req - 2,!.

fig_cost(P,_,Mt,Tool,Cost,Mn,Time_req) :-
working(Mt,Mn,_,P,_,_,0),
dline(P,D),
resource(Mt, Tool,Mn,Time_req),
Cost =D * Time_req - 1,!.

fig_cost(P,_,Mt,Tool,Cost,Mn,Time_req) :-
working(Mt,Mn,_,..._,_,o),
dline(P,D),
resource(Mt, Tool,Mn, Time_req),
Cost =D * Time_req,!.

part_finished :- working(Mt,Mn,Tool,P,Name,Seq, Time_left),
Time_left > 0,
adj_time(Mt,Mn,Tool,P,Name,Seq,Time_left, New_time),
New_time =0,
clear_mach(Mt,Mn),
not(ready(P,Name,Mt,Tool,_,_,)),
check_working(Mt,P,Name),
clear_gs(Mt,P,1),
display_finished(P,Mt),
do_retractwi(P,Name, Mt),
fail,!.

part_finished :- !.

check_working(Mt,P,Name) :-
working(Mt,_,_,P,Name, ,Time),Time > 0,!,fail.
check_working(_,_,) :- L.

do_retractwt(P,_,c) :-
retract(waiting(P,Name,c,New_mt,New_tool,New_quan)),
Org_quan = New_quan,
assert(ready(P,Name,New_mt,New_tool,Org_quan,New_quan,1)),
display_ready(P,New_mt,Org_quan,1),!.

do_retractwt(P,Name Mt) :-
clear_start(P),
retract(waiting(P,Name Mt,New_mt,New_tool,New_quan)),
Org_quan = New_quan,
assert(ready(P,Name,New_mt,New_tool,Org_quan,New_quan,1)),
display_ready(P,New_mt,Org_quan,1),!.

adj_time(Mt,Mn,Tool ,P,Name,Seq,Time_left,New_time) :-
retract(working(Mt,Mn,Tool,P,Name,Seq, Time_left)),
New_time = Time_left - 1,
asserta(working(Mt,Mn,Tool,P,Name,Seq,New_time)),!.

draw_mach2 :- not(draw_machines),!.

301

draw_machines :- resource(Type,_,Num,_),
locate(Type,Xpos,Ypos),
MachY = Ypos + ((Num - 1) * 1500),
MachX = Xpos,
ToX = MachX + 1000,
ToY = MachY + 1000,
box(MachX ,MachY,ToX,ToY,5,5,0),fail,!.

display_ready(P,Mt,Quan,Seq) :-
locate(Mt,Xpos, Ypos),
QueueY = Ypos + ((P - 1) * 750), ToY = QueueY + 500,
QueueX = Xpos - 2000, ToX = QueueX + 1000,
peolor(P,Col),Pr= Col,
box(QueueX,QueueY,ToX,ToY,0,0,1),
box(QueueX,QueueY,ToX,ToY,Pr,Pr,0),
NewX1 = QueueX + 4000, NewX2 = ToX + 4000,
box(NewX1,QueueY,NewX2, Toy,Pr,Pr,0),
Ratio = (((Seq - 1) * 1000) div Quan) mod 100C,
Rem = 1000 - Ratio,
NewX3 = QueueX + Ratio, NewX4 = NewX1 + Rem,
box(NewX3,QueueY,ToX,ToY,Pr,Pr,1),
box(NewX4,QueueY,NewX2, ToY,Pr,Pr,1),!.

display_ready(_,_,_,_):-!.

display_working :- working(Mt,Mn,_,P,_, ,Time),Time >0,
display_trans(Mt,P,Time),
locate(Mt,Xpos, Ypos),
MachY= Ypos + ((Mn - 1) * 1500) + 250,
MachX= Xpos + 250,
ToX = MachX + 500,
ToY = MachY + 500,
peolor(P,Col),Pr= Col,
box(MachX MachY,ToX,ToY,1,Pr,1),
fail,!.

clear_gqs(Mt,P,1) :- clear_queue(Mt,P),!.
clear_gs(_,_,):-!.

302

clear_gqueue(Type,Num) :-
display_trans(Type,0,1),
display_trans(Type,0,2),
display_trans(Type,0,3),
lIocate(Type,’spus, Ypos),
MachY = Ypos + ((Num - 1) * 750),
MachX = Xpor - 2000,
ToX = MachX + 1000,
ToY = MachY + 500,
pcolor(Num,Col),Pr= Col,
box(MachX ,MachY,ToX,ToY,0,0,1),
box(MachX,MachY,ToX,ToY,Pr,Pr,0),
NewX1 = MachX + 4000,
NewX2 = ToX + 4000,
box(NewX1,MachY ,NewX2,ToY,0,0,1),
box(NewX1,MachY NewX2,ToY,Pr,Pr,0),!.

clear_queue(_,):- .

clear_mach(Type,Num) :-
locate(Type, Xpos,Ypos),
MachY = Ypos + ((Num - 1) * 1500),
MachX = Xpos,
ToX = MachX + 1000,
ToY = MachY + 1000,
box(MachX MachY,ToX,ToY,0,0,1),
box(MachX,MachY,ToX,ToY,5,5,0),!.

clear_mach(_,_):-!.

draw_queues :- ready(P,_, ,_, , ,),
locate(_,Xpos,Ypos),
QueueY = Ypos + ((P - 1) * 750), ToY = QueueY + 500,
QueueX = Xpos - 2000, ToX = QueueX + 1000,
peolor(P,Col),Pr= Col,
box(QueueX,QueueY,ToX,ToY,Pr,Pr,0),
NewX1 = QueueX + 4000, NewX2 = ToX + 4000,
box(NewX1,QueueY ,NewX2,Toy,Pr,Pr,0),fail,!.

display_trans(_,_,0) :- !.

display_trans(Type,P,Num) :-
resource(Type,_,_,Time),N= Time - Num + 1,
trans(Type,N,FromX,FromY,IncX,IncY),
draw_trans(FromX,FromY,IncX,IncY,P),!.

display_trans(_,_,) :- !.

draw_trans(C,D,E,F,P) :- pcolor(P,Col),Pr= Col,
C1 =C,D1 =D,E1 =C + 200,F1 =D + 200,
box(C1,D1,E1,F1,PrPrl),
C2=C1+ED2=D1+FE2=C2+200,F2=D2 + 200,
box(C2,D2,E2,F2,Pr,Pr,1),
C3=C2+ED3=D2+F,E3=C3+200,F3=D3 + 200,
box(C3,D3,E3,F3,Pr,Pr,1),
C4=C3+E, D4 =D3 +F,E4 =C4 + 200,F4 = D4 + 200,
box(C4,D4,E4,F4,Pr,Pr,1),
C5=C4+ED5=D4+F,E5=CS5 +200,F5 =D5 + 200,
box(C5,D5,E5,FS5,Pr,Pr,1),1.

display_start ;- ready(P,_,sa,_,_._,_),
peolor(P,Col),Pr= Col,
PosY=13500 + ((P - 1) * 750),ToY= PosY + 500,
PosX=2500,ToX=PosX + 1000,
box(PosX,PosY,ToX,ToY,Pr,Pr,1),fail,!.

display_start :- ready(P,_,sb,_,_,_,_),
pcolor(P,Col),Pr= Col,
PosY=13500 + ((P - 1) * 750),ToY= PosY + 500,
PosX=2500,ToX=PosX + 1000,
box(PosX,PosY,ToX,ToY,Pr,Pr,1),fail,!.

display_start :- ready(P,_,sc,_,_,_,_),
peolor(P,Col),Pr= Col,
PosY=13500 + ((P - 1) * 750),ToY= PosY + 500,
PosX=2500,ToX=PosX + 1000,
box(PosX,PosY,ToX,ToY,Pr,Pr,1),.fail,!.

et ————— R

display_start :- ready(P,_,sd,_,_, ,_),
peolor(P,Col),Pr= Col,
PosY=13500 + ((P - 1) * 750),ToY=PosY + 500,
PosX=2500,ToX=PosX + 1000,
box(PosX,PosY,ToX,ToY,Pr,Pr,1),fail,!.

display_start :- !.

clear_start(P) :-
PosY=13500 + ((P - 1) * 750) - 1,ToY=PosY + 502,
PosX=2500,ToX=PosX + 1002,
box(PosX,PosY,ToX,ToY,0,0,1),!.

display_finished(P,d) :-
peolor(P,Col),Pr= Col,
PosY=13500 + ((P - 1) * 750),ToY= PosY + 500,
PosX=28500,ToX=PosX + 1000,
box(PosX,PosY,ToX,ToY,Pr,Pr,1),!.

display_finished(_,) :- !.

wis2 :- not(keypressed),key(’g’),!.

wfs2 :- keypressed,readchar(C),
key(X),retract(key(X)),assert(key(C)),!.

wis2 :- wait (2000),wfs2.

print_report :-
writedevice(dat),
nl,clock(Time),
write("clock period - "),write(Time),n],
write("working processes - "),nl,
not(print_working),
writedevice(screen),!.

print_working :- working(A,B,C,D,N,E,F),F >0,

write(D),write(" "),
write(N),write(" "),
write(A),write(" "),
write(C),write(" "),
write(B),write(" "),
write(E),write(" "),
write(F),nl fail,!.

/* Exception Rules follow */

validate_data(tolerance,Val) :-
pp_except(tolerance,Best_tol),
str_real(Best_tol,Bt),
str_real(Val,V),
VY <Bt,
message(tolerance,Val,Best_tol),! fail.

validate_data(radius,Rad) :-
pp_except(radius,Bad_rad),
str_real(Rad,R),
str_real(Bad_rad,B),
R=B,
message(radius,Rad,Bad_rad),! fail.

validate_data(type,Type) :-
machine_used(Type,Mach),
sched_except(machine,Mach,Msg),
message(machine,Mach,Msg),! fail.

validate_data(_,) :-!.

message(tolerance, Tol,Best_tol) :-
gotowindow(4),
clearwindow,
gwrite(0,2,"The value of the",1,0),
gwrite(0,19,"tolerance",4,0),
gwrite(0,29,"for this project is too",1,0),
gwrite(1,2,"restrictive. A value of ",1,0),
Bt =Best_tol, T =Tol,
str_len(Bt,Bt_len),
Pos =27 + Bt_len,
gwrite(1,Pos,"or greater is far",1,0),
gwrite(2,2,"less costly than the value”,1,0),
gwrite(2,29,T,4,0),
gwrite(3,2,"Press ‘ENTER’ to continue”,4,0),
readchar(),!.

e ™=

-'-' -y ~—

-

-

message(radius,Rad,_) :-
gotowindow(4),
clearwindow,
gwrite(0,2,"The value of the",1,0),
gwrite(0,19,"radius",4,0),
gwrite(0,26,"for this project is",1,0),
gwrite(1,2,"too expensive. A value of ",1,0),
gwrite(1,28,"1.5",4,0),
gwrite(1,32,"or",1,0),
gwrite(1,35,"1.75",4,0),
gwrite(1,40,"is far less",1,0),
gwrite(2,2,"costly than the value",1,0),
R =Rad,
gwrite(2,24,R,4,0),
gwrite(3,2,"Press ‘ENTER’ to continue”,4,0),
readchar(),!.

message(machine, Msg) :-
gotowindow(4),
clearwindow,
gwrite(0,2,"The machine required for this operation is ",1,0),
Msgs = Msg,
gwrite(1,2,Msgs,4,0),
gwrite(2,2,"Please revise your design accordingly.",1,0),
gwrite(3,2,”Press ‘ENTER’ to continue”,4,0),
readchar(),!.

gwrite(R,C,S,Color,0):-
cursor(R,C),attribute(Color),write(S).

gwrite(_,_,"",_,1):-\.
gwrite(R,C,S,Color, 1):-
cursor(R,C),attribute(Color),
frontchar(S,Ch,S1),write(Ch),
R1=R+1,
gwrite(R1,C,S1,Color,1).

repeat.
repeat :- repeat.

wer

setEGApalette(L):-
X="012345678901234567",
ptr_dword(X,Segment,Offset),
putinlist(L,Segment,Offset),
bios($10,reg($1002,0,0,01fset,0,0,0,Segment),_).

putinlist([],_,_):-!.

putinlist([BytelT),Segment,Offset):-
membyte(Segment,Offset, Byte),
Offset2=Offset+1,
putinlist(T,Segment,Offset2).

e AN oot

e

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station -
Alexandria, Virginia 22304-6145

Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

Professor C. Thomas Wu, Code 52Wq 5
Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

Professor David L. Smith, Code 69Sm 1
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, California 93943

Professor Robert B. McGhee, Code 52Mz 1
Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

Professor David K. Hsiao, Code 52Hq 1
Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

Professor John R. Ward, Code 62Wa 1
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943

10.

11.

N

Professor Bruno O. Shubert, Code 55Sy
Department of Operations Research
Naval Postgraduate School

Monterey, California 93943

Professor Mandula Waldron
Department of Engineering Graphics
Ohio State University

2070 Neil Avenue

Columbus, Ohio 43210

Lt Relle Lyman

Naval Sea Systems Command
Sea 90G

Washington, D.C. 20362

Major Dana E. Madison

Academy of Health Sciences, U.S. Army
ATTN: Health Care Administration Division
Fort Sam Houston, Texas 78234-6100

310

No. Copies
1

